How do you even give an (openFST-made) FST input? Where does the output go?
The example from Paul Dixon is great. As the OP uses Python I thought I'd add a quick example on how you can "run" transducers with Open FST's Python wrapper. It's a shame that you can not create "linear chain automata" with Open FST, but it's simple to automate as seen below:
def linear_fst(elements, automata_op, keep_isymbols=True, **kwargs):
"""Produce a linear automata."""
compiler = fst.Compiler(isymbols=automata_op.input_symbols().copy(),
acceptor=keep_isymbols,
keep_isymbols=keep_isymbols,
**kwargs)
for i, el in enumerate(elements):
print >> compiler, "{} {} {}".format(i, i+1, el)
print >> compiler, str(i+1)
return compiler.compile()
def apply_fst(elements, automata_op, is_project=True, **kwargs):
"""Compose a linear automata generated from `elements` with `automata_op`.
Args:
elements (list): ordered list of edge symbols for a linear automata.
automata_op (Fst): automata that will be applied.
is_project (bool, optional): whether to keep only the output labels.
kwargs:
Additional arguments to the compiler of the linear automata .
"""
linear_automata = linear_fst(elements, automata_op, **kwargs)
out = fst.compose(linear_automata, automata_op)
if is_project:
out.project(project_output=True)
return out
Let's define a simple Transducer that uppercases the letter "a":
f_ST = fst.SymbolTable()
f_ST.add_symbol("<eps>", 0)
f_ST.add_symbol("A", 1)
f_ST.add_symbol("a", 2)
f_ST.add_symbol("b", 3)
compiler = fst.Compiler(isymbols=f_ST, osymbols=f_ST, keep_isymbols=True, keep_osymbols=True)
print >> compiler, "0 0 a A"
print >> compiler, "0 0 b b"
print >> compiler, "0"
caps_A = compiler.compile()
caps_A
Now we can simply apply the transducer using :
apply_fst(list("abab"), caps_A)
Output:
To see how to use it for an acceptor look at my other answer
One way is to create your machine that performs the transformation. A very simple example would be to upper case a string.
M.wfst
0 0 a A
0 0 b B
0 0 c C
0
The accompanying symbols file contains a line for for each symbols of the alphabet. Note 0 is reserved for null (epsilon) transitions and has special meaning in many of the operations.
M.syms
<epsilon> 0
a 1
b 2
c 3
A 4
B 5
C 6
Then compile the machine
fstcompile --isymbols=M.syms --osymbols=M.syms M.wfst > M.ofst
For an input string "abc" create a linear chain automata, this is a left-to-right chain with an arc for each character. This is an acceptor so we only need a column for the input symbols.
I.wfst
0 1 a
1 2 b
2 3 c
3
Compile as an acceptor
fstcompile --isymbols=M.syms --acceptor I.wfst > I.ofst
Then compose the machines and print
fstcompose I.ofst M.ofst | fstprint --isymbols=M.syms --osymbols=M.syms
This will give the output
0 1 a A
1 2 b B
2 3 c C
3
The output of fstcompose is a lattice of all transductions of the input string. (In this case there is only one). If M.ofst is more complicated fstshortestpath can be used to extract n-strings using the flags --unique -nshortest=n. This output is again a transducer, you could either scrap the output of fstprint, or use C++ code and the OpenFst library to run depth first search to extract the strings.
Inserting fstproject --project_output will convert the output to an acceptor containing only the output labels.
fstcompose I.ofst M.ofst | fstproject --project_output | fstprint --isymbols=M.syms --osymbols=M.syms
Gives the following
0 1 A A
1 2 B B
2 3 C C
3
This is an acceptor because the input and output labels are the same, the --acceptor options can be used to generate more succinct output.
fstcompose I.ofst M.ofst | fstproject --project_output | fstprint --isymbols=M.syms --acceptor