How does c++ std::vector work?

In terms of sizing, there are two values of interest for a std::vector: size, and capacity (accessed via .size() and .capacity()).

.size() is the number of elements that are contained in the vector, whereas .capacity() is the number of elements that can be added to the vector, before memory will be re-allocated.

If you .push_back() an element, size will increase by one, up until you hit the capacity. Once the capacity is reached, most (all?) implementations, re-allocate memory, doubling the capacity.

You can reserve a capacity using .reserve(). For example:

std::vector<int> A;
A.reserve(1);        // A: size:0, capacity:1  {[],x}
A.push_back(0);      // A: size:1, capacity:1  {[0]}
A.push_back(1);      // A: size:2, capacity:2  {[0,1]}
A.push_back(2);      // A: size:3, capacity:4  {[0,1,2],x}
A.push_back(3);      // A: size:4, capacity:4  {[0,1,2,3]}
A.push_back(4);      // A: size:5, capacity:8  {[0,1,2,3,4],x,x,x}

Reallocations of memory would occur at lines 4, 5, and 7.


The vector usually has three pointers. If the vector has never been used they are all 0, or NULL.

  • One to the first element of the vector. (this is the begin() iterator)
  • One to last element of the vector + 1. (this is the end() iterator)
  • And one more to the last allocated but unused element + 1. (this minus begin() is the capacity)

When an element is inserted, the vector allocates some storage and sets its pointers. It might allocate 1 element, or it might allocate 4 elements. Or 50.

Then it inserts the element and increments the last element pointer.

When you insert more elements than are allocated the vector has to get more memory. It goes out and gets some. If the memory location changes then it has to copy all the elements into the new space and free the old space.

A common choice for resizing is to double the allocation every time it needs more memory.


The implementation of std::vector changed slightly with C++0x and later with the introduction of move semantics (see What are move semantics? for an introduction).

When adding an element to a std::vector which is already full then the vector is resized which involves a procedure of allocating a new, larger memory area, moving the existing data to the new vector, deleting the old vector space, and then adding the new element.

std::vector is a collection class in the Standard Template Library. Putting objects into a vector, taking them out, or the vector performing a resize when an item is added to a full vector all require that the class of the object support an assignment operator, a copy constructor, and move semantics. (See type requirements for std::vector as well as std::vector works with classes that are not default constructible? for details.)

One way to think of std::vector is as a C style array of contiguous elements of the type specified when the vector is defined that has some additional functionality to integrate it into the Standard Template Library offerings. What separates a vector from a standard array is that a vector will dynamically grow as items are added. (See std::vector and c-style arrays as well as When would you use an array rather than a vector/string? for some discussion about differences.)

Using std::vector allows the use of other Standard Template Library components such as algorithms so using std::vector comes with quite a few advantages over a C style array as you get to use functionality that already exists.

You can specify an initial size if the maximum is known ahead of time. (See Set both elements and initial capacity of std::vector as well as Choice between vector::resize() and vector::reserve() )

The basics of std::vector physical representation is of a set of pointers using memory allocated from the heap. These pointers allow for the actual operations for accessing the elements stored in the vector, deleting elements from the vector, iterating over the vector, determining the number of elements, determining its size, etc.

Since the physical representation is contiguous memory, deleting items may result in moving of remaining items to close any holes created by the delete operation.

With modern C++ move semantics, the overhead of std::vector has been reduced such that it is typically the default container that would be used for most applications as recommended by Bjarne Stroustrup in his book The C++ Programming Language 4th Edition which discusses C++11.

Tags:

C++

Vector