How Does Modulus Divison Work
The simple formula for calculating modulus is :-
[Dividend-{(Dividend/Divisor)*Divisor}]
So, 27 % 16 :-
27- {(27/16)*16}
27-{1*16}
Answer= 11
Note:
All calculations are with integers. In case of a decimal quotient, the part after the decimal is to be ignored/truncated.
eg: 27/16= 1.6875 is to be taken as just 1 in the above mentioned formula. 0.6875 is ignored.
Compilers of computer languages treat an integer with decimal part the same way (by truncating after the decimal) as well
The result of a modulo division is the remainder of an integer division of the given numbers.
That means:
27 / 16 = 1, remainder 11
=> 27 mod 16 = 11
Other examples:
30 / 3 = 10, remainder 0
=> 30 mod 3 = 0
35 / 3 = 11, remainder 2
=> 35 mod 3 = 2
Most explanations miss one important step, let's fill the gap using another example.
Given the following:
Dividend: 16
Divisor: 6
The modulus function looks like this:
16 % 6 = 4
Let's determine why this is.
First, perform integer division, which is similar to normal division, except any fractional number (a.k.a. remainder) is discarded:
16 / 6 = 2
Then, multiply the result of the above division (2
) with our divisor (6
):
2 * 6 = 12
Finally, subtract the result of the above multiplication (12
) from our dividend (16
):
16 - 12 = 4
The result of this subtraction, 4
, the remainder, is the same result of our modulus above!