How should I format across rows of a gt table efficiently in R?
A generalisable approach to achieve this is to set up a wrapper which loops through the format_specs
dataframe and applies the format rules row by row. For the looping part I make use of purrr::reduce
but a simple for-loop should also work:
library(dplyr)
library(purrr)
library(gt)
#create small dataset
gtcars_8 <-
gtcars %>%
dplyr::group_by(ctry_origin) %>%
dplyr::top_n(2) %>%
dplyr::ungroup() %>%
dplyr::filter(ctry_origin != "United Kingdom")
#> Selecting by msrp
#transpose data
row_labels <- colnames(gtcars_8)
gtcars_8_t <- as.data.frame(t(as.matrix(gtcars_8)))
gtcars_8_t$row_labels <- row_labels
my_column_names <- colnames(gtcars_8_t)[1:8]
#format data
format_specs <- data.frame(row = row_labels[1:10]) # Name column with row labels
format_specs$type <- c("c","c","n","c","c","n","n","n","n","p")
format_specs$decimals <- c( 0 , 0 , 0 , 0 , 0 , 1 , 2 , 2 , 1 , 2 )
myfmt <- function(data, cols, row_spec) {
reduce(row_spec$row, function(x, y) {
row_spec <- filter(row_spec, row == y)
fmt(x, columns = cols,
rows = which(x[["_data"]][["row_labels"]] == y),
fns = function(x) switch(row_spec$type,
n = scales::number(as.numeric(x), accuracy = 10^(-row_spec$decimals), big.mark = ""),
p = scales::percent(as.numeric(x), scale = 1, accuracy = 10^(-row_spec$decimals))))
}, .init = data)
}
gtcars_8_t %>%
slice(1:10) %>%
gt() %>%
cols_move_to_start("row_labels") %>%
myfmt(vars(my_column_names), format_specs)
Created on 2020-06-12 by the reprex package (v0.3.0)
Results in this table: