How to access pandas groupby dataframe by key

You can use the get_group method:

In [21]: gb.get_group('foo')
Out[21]: 
     A         B   C
0  foo  1.624345   5
2  foo -0.528172  11
4  foo  0.865408  14

Note: This doesn't require creating an intermediary dictionary / copy of every subdataframe for every group, so will be much more memory-efficient than creating the naive dictionary with dict(iter(gb)). This is because it uses data-structures already available in the groupby object.


You can select different columns using the groupby slicing:

In [22]: gb[["A", "B"]].get_group("foo")
Out[22]:
     A         B
0  foo  1.624345
2  foo -0.528172
4  foo  0.865408

In [23]: gb["C"].get_group("foo")
Out[23]:
0     5
2    11
4    14
Name: C, dtype: int64

Wes McKinney (pandas' author) in Python for Data Analysis provides the following recipe:

groups = dict(list(gb))

which returns a dictionary whose keys are your group labels and whose values are DataFrames, i.e.

groups['foo']

will yield what you are looking for:

     A         B   C
0  foo  1.624345   5
2  foo -0.528172  11
4  foo  0.865408  14