How to calculate $\lim_{x \to 0}\left(\frac1{x} + \frac{\ln(1-x)}{x^2}\right)$?

You have \begin{eqnarray*} \lim_{x\to 0} \left(\frac{1}{x}+\frac{\ln(1-x)}{x^2}\right) &=& \lim_{x\to 0} \frac{x+\ln(1-x)}{x^2}, \end{eqnarray*} note that $$ \lim_{x\to 0} x+\ln(1-x)=0,\: \lim_{x\to 0} x^2= 0, $$ then by the L'Hospital's rule $$\begin{align*} \lim_{x\to 0} \left(\frac{1}{x}+\frac{\ln(1-x)}{x^2}\right)&= \lim_{x\to 0} \frac{\frac{d}{dx}(x+\ln(1-x))}{\frac{d}{dx}x^2}\\ &= \lim_{x\to 0} \frac{1-\frac{1}{1-x}}{2x}\\ &= \lim_{x\to 0}\frac{\frac{1-x - 1}{1-x}}{2x}\\ &= \lim_{x\to 0} \frac{\frac{x}{x-1}}{2x}\\ &= \lim_{x\to 0}\frac{1}{2(x-1)}\\ &= -\frac{1}{2}. \end{align*}$$


A not so elegant way is to represent $\log(1-x)$ as a power series for $|x| < 1$ i.e. $$\log(1-x) = -x - \frac{x^2}{2} - \frac{x^3}{3} - \frac{x^4}{4} - \ldots$$ Plug this in to get $$\frac1{x} + \frac{\log(1-x)}{x^2} = \frac1{x} - \frac{x + \frac{x^2}{2} + \frac{x^3}{3} + \cdots}{x^2} = -\frac1{2} - \frac{x}{3} - \frac{x^2}{4} - \cdots$$ Hence, the desired limit is $-\frac1{2}$


using the series $$\log(1-x)=-\sum_{n=1}^{\infty}\frac{x^n}{n}$$ for $-1\leq x<1$ we have $$\frac{1}{x}+\frac{\log(1-x)}{x^2}=-\frac{1}{x^2}\sum_{n=2}^{\infty}\frac{x^n}{n}$$ so the limit as $x\to0$ is $-\frac{1}{2}$