How to convert JavaPairInputDStream into DataSet/DataFrame in Spark

Here is the complete working code using Spark 2.0.

import java.util.Collections;
import java.util.HashMap;
import java.util.Map;
import java.util.Set;

import org.apache.spark.SparkConf;
import org.apache.spark.api.java.JavaRDD;
import org.apache.spark.api.java.JavaSparkContext;
import org.apache.spark.api.java.function.Function;
import org.apache.spark.api.java.function.VoidFunction;
import org.apache.spark.sql.Dataset;
import org.apache.spark.sql.Row;
import org.apache.spark.sql.RowFactory;
import org.apache.spark.sql.SparkSession;
import org.apache.spark.sql.types.DataTypes;
import org.apache.spark.sql.types.StructField;
import org.apache.spark.sql.types.StructType;
import org.apache.spark.streaming.Duration;
import org.apache.spark.streaming.api.java.JavaDStream;
import org.apache.spark.streaming.api.java.JavaPairInputDStream;
import org.apache.spark.streaming.api.java.JavaStreamingContext;
import org.apache.spark.streaming.kafka.KafkaUtils;

import kafka.serializer.StringDecoder;
import scala.Tuple2;


public class KafkaToSparkStreaming {
    public static  void main(String arr[]) throws InterruptedException
    {


        SparkConf conf = new SparkConf();
        conf.set("spark.app.name", "SparkReceiver"); //The name of application. This will appear in the UI and in log data.
        //conf.set("spark.ui.port", "7077");    //Port for application's dashboard, which shows memory and workload data.
        conf.set("dynamicAllocation.enabled","false");  //Which scales the number of executors registered with this application up and down based on the workload
        //conf.set("spark.cassandra.connection.host", "localhost"); //Cassandra Host Adddress/IP
        conf.set("spark.serializer","org.apache.spark.serializer.KryoSerializer");  //For serializing objects that will be sent over the network or need to be cached in serialized form.
        conf.setMaster("local");
        conf.set("spark.streaming.stopGracefullyOnShutdown", "true");

        JavaSparkContext sc = new JavaSparkContext(conf);
        // Create the context with 2 seconds batch size
        JavaStreamingContext ssc = new JavaStreamingContext(sc, new Duration(2000));

        Map<String, String> kafkaParams = new HashMap<String, String>();

        kafkaParams.put("zookeeper.connect", "localhost:2181"); //Make all kafka data for this cluster appear under a particular path. 
        kafkaParams.put("group.id", "testgroup");   //String that uniquely identifies the group of consumer processes to which this consumer belongs
        kafkaParams.put("metadata.broker.list", "localhost:9092"); //Producer can find a one or more Brokers to determine the Leader for each topic.
        kafkaParams.put("serializer.class", "kafka.serializer.StringEncoder"); //Serializer to use when preparing the message for transmission to the Broker.
        kafkaParams.put("request.required.acks", "1");  //Producer to require an acknowledgement from the Broker that the message was received.

        Set<String> topics = Collections.singleton("ny-2008.csv");

        //Create an input DStream for Receiving data from socket
        JavaPairInputDStream<String, String> directKafkaStream = KafkaUtils.createDirectStream(ssc,
                String.class, 
                String.class, 
                StringDecoder.class, 
                StringDecoder.class, 
                kafkaParams, topics);

        //Create JavaDStream<String>
        JavaDStream<String> msgDataStream = directKafkaStream.map(new Function<Tuple2<String, String>, String>() {
            @Override
            public String call(Tuple2<String, String> tuple2) {
              return tuple2._2();
            }
          });
        //Create JavaRDD<Row>
        msgDataStream.foreachRDD(new VoidFunction<JavaRDD<String>>() {
              @Override
              public void call(JavaRDD<String> rdd) { 
                  JavaRDD<Row> rowRDD = rdd.map(new Function<String, Row>() {
                      @Override
                      public Row call(String msg) {
                        Row row = RowFactory.create(msg);
                        return row;
                      }
                    });
        //Create Schema       
        StructType schema = DataTypes.createStructType(new StructField[] {DataTypes.createStructField("Message", DataTypes.StringType, true)});
        //Get Spark 2.0 session       
        SparkSession spark = JavaSparkSessionSingleton.getInstance(rdd.context().getConf());
        Dataset<Row> msgDataFrame = spark.createDataFrame(rowRDD, schema);
        msgDataFrame.show();
              }
        });

        ssc.start();            
        ssc.awaitTermination();  
    }

}

class JavaSparkSessionSingleton {
      private static transient SparkSession instance = null;
      public static SparkSession getInstance(SparkConf sparkConf) {
        if (instance == null) {
          instance = SparkSession
            .builder()
            .config(sparkConf)
            .getOrCreate();
        }
        return instance;
      }
    }

Technically Dstream is sequence of RDDs, you won't convert Dstream to Datframe instead you will convert each RDD to Dataframe/Dataset as below(Scala code please convert it in Java for your case):

stream.foreachRDD { rdd =>

  val dataFrame = rdd.map {case (key, value) => Row(key, value)}.toDF()

}