How to create a consecutive group number
Two other options:
1) Using the .GRP
function from the data.table
package:
library(data.table)
setDT(dat)[, num := .GRP, by = site]
with the example dataset from below this results in:
> dat
site score num
1: 1 0.14945795 1
2: 1 0.60035697 1
3: 1 0.94643075 1
4: 8 0.68835336 2
5: 8 0.50553372 2
6: 8 0.37293624 2
7: 4 0.33580504 3
8: 4 0.04825135 3
9: 4 0.61894754 3
10: 8 0.96144729 2
11: 8 0.65496051 2
12: 8 0.51029199 2
2) Using the group_indices
function from dplyr
:
dat$num <- group_indices(dat, site)
or when you want to work around non-standard evaluation:
library(dplyr)
dat %>%
mutate(num = group_indices_(dat, .dots = c('site')))
which results in:
site score num
1 1 0.42480366 1
2 1 0.98736177 1
3 1 0.35766187 1
4 8 0.06243182 3
5 8 0.55617002 3
6 8 0.20304632 3
7 4 0.90855921 2
8 4 0.25215078 2
9 4 0.44981251 2
10 8 0.60288270 3
11 8 0.46946587 3
12 8 0.44941782 3
As can be seen, dplyr
gives a different order of the group numbers.
If you want another number every time the group changes, there are several other options:
1) with base R:
# option 1:
dat$num <- cumsum(c(TRUE, head(dat$site, -1) != tail(dat$site, -1)))
# option 2:
x <- rle(dat$site)$lengths
dat$num <- rep(seq_along(x), times=x)
2) with the data.table
package:
library(data.table)
setDT(dat)[, num := rleid(site)]
which all result in:
> dat
site score num
1 1 0.80817855 1
2 1 0.07881334 1
3 1 0.60092828 1
4 8 0.71477988 2
5 8 0.51384565 2
6 8 0.72011650 2
7 4 0.74994627 3
8 4 0.09564052 3
9 4 0.39782587 3
10 8 0.29446540 4
11 8 0.61725367 4
12 8 0.97427413 4
Used data:
dat <- data.frame(site = rep(c(1,8,4,8), each = 3), score = runif(12))
This should be fairly efficient and understandable:
Dat$sitenum <- match(Dat$site, unique(Dat$site))
Try Data$number <- as.numeric(as.factor(Data$site))
On a sidenote : the difference between the solution of me and @Chase on one hand, and the one of @DWin on the other, is the ordering of the numbers. Both as.factor
and factor
will automatically sort the levels, whereas that doesn't happen in the solution of @DWin :
Dat <- data.frame(site = rep(c(1,8,4), each = 3), score = runif(9))
Dat$number <- as.numeric(factor(Dat$site))
Dat$sitenum <- match(Dat$site, unique(Dat$site) )
Gives
> Dat
site score number sitenum
1 1 0.7377561 1 1
2 1 0.3131139 1 1
3 1 0.7862290 1 1
4 8 0.4480387 3 2
5 8 0.3873210 3 2
6 8 0.8778102 3 2
7 4 0.6916340 2 3
8 4 0.3033787 2 3
9 4 0.6552808 2 3
In the new dplyr
1.0.0 we can use cur_group_id()
which gives a unique numeric identifier to a group.
library(dplyr)
df %>% group_by(site) %>% mutate(number = cur_group_id())
# site score number
# <int> <int> <int>
#1 1 10 1
#2 1 11 1
#3 1 12 1
#4 4 10 2
#5 4 11 2
#6 4 11 2
#7 8 9 3
#8 8 8 3
#9 8 7 3
data
df <- structure(list(site = c(1L, 1L, 1L, 4L, 4L, 4L, 8L, 8L, 8L),
score = c(10L, 11L, 12L, 10L, 11L, 11L, 9L, 8L, 7L)),
class = "data.frame", row.names = c(NA, -9L))