Example 1: dataframe create
>>> df2 = pd.DataFrame(np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]]),
... columns=['a', 'b', 'c'])
>>> df2
a b c
0 1 2 3
1 4 5 6
2 7 8 9
Example 2: create dataframe with column names pandas
In [4]: import pandas as pd
In [5]: df = pd.DataFrame(columns=['A','B','C','D','E','F','G'])
In [6]: df
Out[6]:
Empty DataFrame
Columns: [A, B, C, D, E, F, G]
Index: []
Example 3: create a df in pandas
import pandas as pd
data = {'First Column Name': ['First value', 'Second value',...],
'Second Column Name': ['First value', 'Second value',...],
....
}
df = pd.DataFrame (data, columns = ['First Column Name','Second Column Name',...])
print (df)
Example 4: how to create dataframe in python
import pandas as pd
# intialise data of lists.
data = {'Name':['Tom', 'nick', 'krish', 'jack'],
'Age':[20, 21, 19, 18]}
# Create DataFrame
df = pd.DataFrame(data)
# Print the output.
df
Example 5: how do we create a dataframe in python
# Import pandas library
import pandas as pd
# initialize list of lists
data = [['Group A', 85], ['Group B', 92], ['Group C', 88]]
# Create the pandas DataFrame
df = pd.DataFrame(data, columns = ['Name', 'Score'])
# print dataframe.
df
Example 6: create a dataframe python
import numpy as np
import pandas as pd
vect1=np.zeros(10)
vect2=np.ones(10)
df=pd.DataFrame({'col1':vect1,'col2':vect2})