Chemistry - How to derive composite acidity constant for H2CO3*?

[OP] Because if I make summation of (19) and (20), it will be: [...]

They meant they combine the mathematical expressions, not the chemical equations.

To express

$$K_\ce{H2CO3^\Huge{*}} = \frac{K_\ce{H2CO3}}{1 + K}$$

in terms of concentrations, you substitute equations (1) and (2) into the expression:

$$K = \dfrac{\ce{[CO2(aq)]}}{\ce{[H2CO3]}}\tag{1}$$ $$K_\ce{H2CO3} = \dfrac{\ce{[H+][HCO3-]}}{\ce{[H2CO3]}}\tag{2}$$

So

$$\frac{K_\ce{H2CO3}}{1 + K} = \frac{\dfrac{\ce{[H+][HCO3-]}}{\ce{[H2CO3]}}}{1 + \dfrac{\ce{[CO2(aq)]}}{\ce{[H2CO3]}}}$$

Multiplying top and bottom of the fraction by $\ce{[H2CO3]}$ gives:

$$\frac{\ce{[H2CO3]}}{1 + K} = \frac{\ce{[H+][HCO3-]}}{\ce{[H2CO3]} + \ce{[CO2(aq)]}}$$

If you want to make the intention clearer, you define a total concentration of carbon dioxide as

$$[\ce{H2CO3^\huge{*}}] = \ce{[H2CO3]} + \ce{[CO2(aq)]}$$

and then write

$$K_\ce{H2CO3^\Huge{*}} = \frac{K_\ce{H2CO3}}{1 + K} = \frac{\ce{[H+][HCO3-]}}{[\ce{H2CO3^\huge{*}}]}$$

Tags: