how to derive the mean and variance of a Gaussian Random variable?
UPDATE 21-03-2017
A much faster way is to differentiate both sides of
$$\int_{-\infty}^{\infty}\frac{1}{\sqrt{2\pi\sigma^2}}\exp\left\{-\frac{(x-\mu)^2}{2\sigma^2}\right\}dx=1$$ with respect to the two parameters $\mu$ and $\sigma^2$ (RHS will then be zero).
The Gaussian pdf is defined as $$f_X(x) =\frac{1}{\sigma\sqrt{2\pi}}\exp\left\{-\frac{(x-\mu)^2}{2\sigma^2}\right\}$$
where $\mu$ and $\sigma$ are two parameters, with $\sigma >0$. By definition of the mean we have $$E(X) = \int_{-\infty}^{\infty}x\frac{1}{\sigma\sqrt{2\pi}}\exp\left\{-\frac{(x-\mu)^2}{2\sigma^2}\right\}dx$$ which using integral properties can be written as
$$E(X) = \int_{-\infty}^{\infty}(x+\mu)\frac{1}{\sigma\sqrt{2\pi}}\exp\left\{-\frac{x^2}{2\sigma^2}\right\}dx$$
$$=\int_{-\infty}^{\infty}x\frac{1}{\sigma\sqrt{2\pi}}\exp\left\{-\frac{x^2}{2\sigma^2}\right\}dx \;+\; \int_{-\infty}^{\infty}\mu\frac{1}{\sigma\sqrt{2\pi}}\exp\left\{-\frac{x^2}{2\sigma^2}\right\}dx \qquad [1]$$
For the first integral, call it $I_1$ we have using additivity
$$I_1 = \int_{-\infty}^0x\frac{1}{\sigma\sqrt{2\pi}}\exp\left\{-\frac{x^2}{2\sigma^2}\right\}dx + \int_{0}^{\infty}x\frac{1}{\sigma\sqrt{2\pi}}\exp\left\{-\frac{x^2}{2\sigma^2}\right\}dx$$ Swapping the integration limits in the first we have
$$I_1 = -\int_{0}^{-\infty}x\frac{1}{\sigma\sqrt{2\pi}}\exp\left\{-\frac{x^2}{2\sigma^2}\right\}dx + \int_{0}^{\infty}x\frac{1}{\sigma\sqrt{2\pi}}\exp\left\{-\frac{x^2}{2\sigma^2}\right\}dx$$
and using again integral properties we have
$$I_1 = \int_{0}^{\infty}(-x)\frac{1}{\sigma\sqrt{2\pi}}\exp\left\{-\frac{(-x)^2}{2\sigma^2}\right\}dx + \int_{0}^{\infty}x\frac{1}{\sigma\sqrt{2\pi}}\exp\left\{-\frac{x^2}{2\sigma^2}\right\}dx$$
$$\Rightarrow I_1 = -\int_{0}^{\infty}x\frac{1}{\sigma\sqrt{2\pi}}\exp\left\{-\frac{x^2}{2\sigma^2}\right\}dx + \int_{0}^{\infty}x\frac{1}{\sigma\sqrt{2\pi}}\exp\left\{-\frac{x^2}{2\sigma^2}\right\}dx = 0\qquad [2]$$
So we have that
$$E(X) = \int_{-\infty}^{\infty}\mu\frac{1}{\sigma\sqrt{2\pi}}\exp\left\{-\frac{x^2}{2\sigma^2}\right\}dx $$
Multiply by $\sigma \sqrt2$ to obtain
$$E(X) = \int_{-\infty}^{\infty}\mu\frac{1}{\sqrt{\pi}}e^{-x^2} dx = \mu\frac{2}{\sqrt{\pi}}\int_{0}^{\infty}e^{-x^2} dx$$
...the last term because the integrand is an even function.
Now $$\frac{2}{\sqrt{\pi}}\int_{0}^{\infty}e^{-x^2} dx = \lim_{t\rightarrow \infty}\frac{2}{\sqrt{\pi}}\int_{0}^{t}e^{-x^2} dx = \lim_{t\rightarrow \infty} \text{erf}(t) = 1$$
where "erf" is the error function. So we end up with $$E(X) = \mu$$ i.e. that the parameter $\mu$ is the mean of the distribution.
VARIANCE
We have
$$\text {Var}(X) = \int_{-\infty}^{\infty}(x-\mu)^2\frac{1}{\sigma\sqrt{2\pi}}\exp\left\{-\frac{(x-\mu)^2}{2\sigma^2}\right\}dx$$
Applying the same tricks as before we have
$$\int_{-\infty}^{\infty}(x-\mu)^2\frac{1}{\sigma\sqrt{2\pi}}\exp\left\{-\frac{(x-\mu)^2}{2\sigma^2}\right\}dx = \int_{-\infty}^{\infty}x^2\frac{1}{\sigma\sqrt{2\pi}}\exp\left\{-\frac{x^2}{2\sigma^2}\right\}dx $$
$$=\sigma \sqrt2\int_{-\infty}^{\infty}(\sigma \sqrt2x)^2\frac{1}{\sigma\sqrt{2\pi}}\exp\left\{-\frac{(\sigma \sqrt2x)^2}{2\sigma^2}\right\}dx = \sigma^2\frac{4}{\sqrt{\pi}}\int_{0}^{\infty}x^2e^{-x^2}dx$$
Define $t=x^2\Rightarrow x= \sqrt t$ and $dt = 2xdx = 2\sqrt tdx \Rightarrow dx = (2\sqrt t)^{-1}dt$. Substituting
$$V(X) = \sigma^2\frac{4}{\sqrt{\pi}}\int_{0}^{\infty}(\sqrt t)^2(2\sqrt t)^{-1}e^{-t}dt = \sigma^2\frac{4}{\sqrt{\pi}}\frac 12 \int_{0}^{\infty}t^{\frac 32 -1}e^{-t}dt= \sigma^2\frac{4}{\sqrt{\pi}}\frac 12 \Gamma\left(\frac 32\right)$$
$$\Rightarrow V(X) = \sigma^2\frac{4}{\sqrt{\pi}}\frac 12 \frac {\sqrt \pi}{2} = \sigma^2$$
where $\Gamma()$ is the Gamma function. So the parameter $\sigma$ is the square-root of the variance, i.e. the standard deviation.
If $x\mapsto f(x)$ is the density function of a random variable $X$ with expected value $0$ and variance $1$, then $x\mapsto \frac1\sigma f\left(\frac{x-\mu}{\sigma}\right)$ is the density function of $\mu+\sigma X$, and thus of a random variable with expected value $\mu$ and variance $\sigma^2$.
That can be shown by thinking about the substitution $u = \dfrac{x-\mu}{\sigma}$ and $du=\dfrac{dx}\sigma$.
Therefore the problem reduces to this: How do we show that $$ x\mapsto \frac{1}{\sqrt{2\pi}}\exp\left(\frac{-x^2}{2}\right) $$ is the density of a distribution with expectation $0$ and variance $1$?
If you know that the expectation of a distribution with density $f$ is $\int_{-\infty}^\infty xf(x)\,dx$, then you know that you need to find $$ \int_{-\infty}^\infty x \frac{1}{\sqrt{2\pi}}\exp\left(\frac{-x^2}{2}\right)\,dx. $$
Since this is the integral of an odd function over an interval that is symmetric about $0$, it must be equal to $0$ unless the positive and negative parts both diverge to $\infty$. The positive part is a constant times $$ \int_0^\infty x \exp\left(\frac{-x^2}{2}\right)\,dx = \int_0^\infty \exp(u)\,du, $$ where $u=-x^2/2$ so $du=x\,dx$. Clearly this is finite, and the negative part can be treated the same way.
The variance is \begin{align} & \int_{-\infty}^\infty x^2 \frac{1}{\sqrt{2\pi}}\exp\left(\frac{-x^2}{2}\right)\,dx \\[8pt] = {} & 2 \int_0^\infty x^2 \frac{1}{\sqrt{2\pi}}\exp\left(\frac{-x^2}{2}\right)\,dx \\[8pt] = {} & 2\int_0^\infty x^2 \frac{1}{\sqrt{2\pi}}\exp\left(\frac{-x^2}{2}\right)\,dx \\[8pt] = {} & 2\frac{1}{\sqrt{2\pi}} \int_0^\infty \Big(x\Big)\Big(x\exp\left(\frac{-x^2}{2}\right)\,dx\Big) \\[8pt] = {} & \frac{2}{\sqrt{2\pi}} \int x\,dv \\[8pt] = {} & \frac{2}{\sqrt{2\pi}} \left( xv-\int v\,dx \right) \\[8pt] = {} & \frac{2}{\sqrt{2\pi}} \left(\left[-x\exp\left(\frac{-x^2}{2}\right)\right]_0^\infty -\int_0^\infty -\exp\left(\frac{-x^2}{2}\right) \,dx \right) \\[8pt] = {} & \frac{2}{\sqrt{2\pi}} \int_0^\infty \exp\left(\frac{-x^2}{2}\right) \,dx. \end{align}
You know that this is equal to $1$ if you know how the normalizing constant in the density function was found.