How to draw the calculation of a determinant?
I just have one question: The numbers in the determine itself are all right aligned. You can see it in column 3, row 1 and 2 in the picture I posted. The 2 is just above the -2 and they are both right aligned, no matter if there is a minus or not. Do you have any idea how to realize that? -- user24295
No, I don't, but according to comments by percusse and Manuel you can do that by loading mathtools instead of amsmath and use \begin{vmatrix*}[r] … \end{vmatrix*}
. I haven't checked though by myself. But I do recomment keep the standard alignement provided by \begin{vmatrix} ... \end{vmatrix}
.
UPDATE with align. Thanks to cmhughes's advice I've replaced eqnarray
with align
and &=&
with &=
. ADDED. As commented by egreg eqnarray
should be avoided (see e.g. here and here) due to spacing discrepancies.
The updated code is:
\documentclass{article}
\usepackage{amsmath}
\begin{document}
\begin{align}
\det A &=\left.
\begin{array}{c}
\;\;\text{*)} \\
-1\text{)} \\
-2\text{)} \\
-2\text{)}
\end{array}
\right.
\begin{vmatrix}
1 & 3 & 2 & -6 \\
1 & 2 & -2 & -5 \\
2 & 4 & -2 & -9 \\
2 & 4 & -6 & -9 \notag
\end{vmatrix}
=
\begin{vmatrix}
1 & 3 & 2 & -6 \\
0 & -1 & -4 & 1 \\
0 & -2 & -6 & 3 \\
0 & -2 & -10 & 3
\end{vmatrix}
\\ \notag
&& \\
&=\left.
\begin{array}{c}
\;\;\text{*)} \\
-2\text{)} \\
-2\text{)}
\end{array}
\right.
\begin{vmatrix}
1 & 4 & 1 \\
2 & 6 & 3 \\
2 & 10 & 3
\end{vmatrix}
=
\begin{vmatrix}
1 & 4 & 1 \\
0 & -2 & 1 \\
0 & 2 & 1
\end{vmatrix}
=
\begin{vmatrix}
-2 & 1 \\
2 & 1
\end{vmatrix}
=-4\notag
\end{align}
\end{document}
The Output is:
We can use the following code (with eqnarray)
\documentclass{article}
\usepackage{amsmath}
\begin{document}
\begin{eqnarray*}
\det A\; &=&\left.
\begin{array}{c}
\;\;\text{*)} \\
-1\text{)} \\
-2\text{)} \\
-2\text{)}
\end{array}
\right.
\begin{vmatrix}
1 & 3 & 2 & -6 \\
1 & 2 & -2 & -5 \\
2 & 4 & -2 & -9 \\
2 & 4 & -6 & -9
\end{vmatrix}
=
\begin{vmatrix}
1 & 3 & 2 & -6 \\
0 & -1 & -4 & 1 \\
0 & -2 & -6 & 3 \\
0 & -2 & -10 & 3
\end{vmatrix}
\\
&& \\
&=&\left.
\begin{array}{c}
\;\;\text{*)} \\
-2\text{)} \\
-2\text{)}
\end{array}
\right.
\begin{vmatrix}
1 & 4 & 1 \\
2 & 6 & 3 \\
2 & 10 & 3
\end{vmatrix}
=
\begin{vmatrix}
1 & 4 & 1 \\
0 & -2 & 1 \\
0 & 2 & 1
\end{vmatrix}
=
\begin{vmatrix}
-2 & 1 \\
2 & 1
\end{vmatrix}
=-4
\end{eqnarray*}
\end{document}
to type
You can define an xvmatrix
environment for the "eXtended" matrix, where you specify the coefficients as a first column:
\documentclass{article}
\usepackage{amsmath}
\makeatletter
\newenvironment{xvmatrix}% eXtended vmatrix
{\left.\array{@{}r |@{\,}*\c@MaxMatrixCols c}}
{\endarray\kern-\arraycolsep\right|}
\makeatother
\begin{document}
\begin{align*}
\det A &=
\begin{xvmatrix}
*) & 1 & 3 & 2 & -6 \\
-1) & 1 & 2 & -2 & -5 \\
-2) & 2 & 4 & -2 & -9 \\
-2) & 2 & 4 & -6 & -9
\end{xvmatrix}
=
\begin{vmatrix}
1 & 3 & 2 & -6 \\
0 & -1 & -4 & 1 \\
0 & -2 & -6 & 3 \\
0 & -2 & -10 & 3
\end{vmatrix}
\\
&=
\begin{xvmatrix}
*) & 1 & 4 & 1 \\
-2) & 2 & 6 & 3 \\
-2) & 2 & 10 & 3
\end{xvmatrix}
=
\begin{vmatrix}
1 & 4 & 1 \\
0 & -2 & 1 \\
0 & 2 & 1
\end{vmatrix}
=
\begin{vmatrix}
-2 & 1 \\
2 & 1
\end{vmatrix}
=-4
\end{align*}
\end{document}
Update 2020
You can use the nicematrix
package.
\documentclass{article}
\usepackage{amsmath,nicematrix}
\begin{document}
\begin{align*}
\det A &=
\begin{vNiceMatrix}[first-col]
*) & 1 & 3 & 2 & -6 \\
-1) & 1 & 2 & -2 & -5 \\
-2) & 2 & 4 & -2 & -9 \\
-2) & 2 & 4 & -6 & -9
\end{vNiceMatrix}
=
\begin{vmatrix}
1 & 3 & 2 & -6 \\
0 & -1 & -4 & 1 \\
0 & -2 & -6 & 3 \\
0 & -2 & -10 & 3
\end{vmatrix}
\\
&=
\begin{vNiceMatrix}[first-col]
*) & 1 & 4 & 1 \\
-2) & 2 & 6 & 3 \\
-2) & 2 & 10 & 3
\end{vNiceMatrix}
=
\begin{vmatrix}
1 & 4 & 1 \\
0 & -2 & 1 \\
0 & 2 & 1
\end{vmatrix}
=
\begin{vmatrix}
-2 & 1 \\
2 & 1
\end{vmatrix}
=-4
\end{align*}
\end{document}
I do not consider a good habit introducing such a notation, my experience is that it only confuses people. Mathematical formalism is there for a reason. You can try the following:
\documentclass{article}
\pagestyle{empty}
\usepackage{amsmath}
\begin{document}
\begin{align*}
\det A&=
\underbrace{\begin{vmatrix}
1 & 0 & 0 & 0 \\
-1 & 1 & 0 & 0 \\
-2 & 0 & 1 & 0 \\
-2 & 0 & 0 & 1
\end{vmatrix}}_{=1}
\cdot
\begin{vmatrix}
1 & 3 & 2 & -6 \\
1 & 2 & -2 & -5 \\
2 & 4 & -2 & -9 \\
2 & 4 & -6 & -9
\end{vmatrix}
=
\begin{vmatrix}
1 & 3 & 2 & -6 \\
0 & -1 & -4 & 1 \\
0 & -2 & -6 & 3 \\
0 & -2 & -10 & 3
\end{vmatrix}
\\
&=
\underbrace{\begin{vmatrix}
1 & 0 & 0 \\
-2 & 1 & 0 \\
-2 & 0 & 1
\end{vmatrix}}_{=1}
\cdot
\begin{vmatrix}
1 & 4 & 1 \\
2 & 6 & 3 \\
2 & 10 & 3
\end{vmatrix}
=
\begin{vmatrix}
1 & 4 & 1 \\
0 & -2 & 1 \\
0 & 2 & 1
\end{vmatrix}
=
\begin{vmatrix}
-2 & 1 \\
2 & 1
\end{vmatrix}
=-4
\end{align*}
\end{document}
Somehow, it would make more sense if you tried to demonstrate the column manipulation, because then the triangle unit-determinant matrix would come on the right side. But even this is completely clear IMHO.