How to find the sum of this infinite series: $\sum_{n=1}^{ \infty } \frac1n \cdot \frac{H_{n+2}}{n+2}$

I thought it would be instructive to present a way forward that relies on elementary analysis, including knowledge of the sum $\sum_{k=1}^\infty \frac1{k^2}=\pi^2/6$, partial fraction expansion, and telescoping series. It is to that end we proceed.


The Harmonic number, $H_{n+2}$, can be written as

$$H_{n+2}=\sum_{k=1}^{n+2}\frac1k=\frac{1}{n+2}+\frac{1}{n+1}+\sum_{k=1}^n \frac1k$$

Therefore, we have

$$\begin{align} \sum_{n=1}^\infty\frac{1}{n(n+2)}\sum_{k=1}^{n+2}\frac1k&=\sum_{n=1}^\infty\frac{1}{n(n+2)^2}+\sum_{n=1}^\infty\frac{1}{n(n+1)(n+2)}+\sum_{k=1}^\infty \frac1k \sum_{n=k}^\infty\left(\frac{1}{2n}-\frac{1}{2(n+2)}\right)\\\\ &=\sum_{n=1}^\infty\frac{1}{n(n+2)^2}+\sum_{n=1}^\infty\frac{1}{n(n+1)(n+2)}+\sum_{k=1}^\infty\frac1{2k^2}+\frac12\\\\ &=\sum_{n=1}^\infty\frac{1}{n(n+2)^2}+\sum_{n=1}^\infty\frac{1}{n(n+1)(n+2)}+\frac{\pi^2}{12}+\frac12\\\\ &=\color{red}{\sum_{n=1}^\infty\left(\frac{1}{4n}-\frac{1}{4(n+1)}-\frac{1}{2(n+2)^2}\right)}\\\\ &+\color{blue}{\sum_{n=1}^\infty\left(\frac{1}{2n}-\frac{1}{2(n+1)}+\frac{1}{2(n+2)}-\frac{1}{2(n+1)}\right)}\\\\ &+\frac{\pi^2}{12}+\frac12\\\\ &=\color{blue}{1-\frac{\pi^2}{12}}+\color{red}{\frac14}+\frac{\pi^2}{12}+\frac12\\\\ &=\frac74 \end{align}$$


Actually the calculation for this sum is very simple and what we need is the sum of telescopic series. In fact \begin{align} \sum_{n=1}^\infty\frac{H_{n+2}}{n(n+2)}&=\frac12\sum_{n=1}^\infty H_{n+2}\left(\frac{1}{n}-\frac1{n+2}\right)\\\\ &=\frac{1}{2}\sum_{n=1}^\infty\left(\frac{1}{n}\left(H_{n}+\frac{1}{n+1}+\frac{1}{n+2}\right)-\frac{H_{n+2}}{n+2}\right)\\\\ &=\frac{1}{2}\sum_{n=1}^\infty\left(\frac{H_n}{n}+\frac{1}{n(n+1)}+\frac{1}{n(n+2)}-\frac{H_{n+2}}{n+2}\right)\\\\ &=\frac{1}{2}\sum_{n=1}^\infty\left(\frac{H_n}{n}-\frac{H_{n+2}}{n+2}\right)+\frac12\sum_{n=1}^\infty\left(\frac{1}{n(n+1)}+\frac{1}{n(n+2)}\right)\\\\ &=\frac12\left(H_1+\frac{H_2}2\right)+\frac78\\\\ &=\frac{7}{4}. \end{align}


recall: $\displaystyle H_a = \int_0^1 \frac{1-x^a}{1-x}\,\mathrm{d}x$, and integration by parts once we have $$\int_0^1 x^{a-1} \ln (1-x)\,\mathrm{d}x = -\frac{H_a}{a}$$ Thus, \begin{align*}&\sum\limits_{n=1}^{\infty} \frac{H_{n+a}}{n(n+a)} = -\sum\limits_{n=1}^{\infty} \frac{1}{n}\int_0^{1} x^{n+a-1} \ln (1-x)\,\mathrm{d}x= \int_0^{1} x^{a-1} \ln^{2}(1-x)\,\mathrm{d}x\\&= \lim\limits_{b \to 1}\frac{\partial^2}{\partial b^2}\int_0^{1} x^{a-1}(1-x)^{b-1}\,\mathrm{d}x= \lim\limits_{b \to 1} \frac{\partial^2}{\partial b^2} \frac{\Gamma(a)\Gamma(b)}{\Gamma(a+b)}\\&= \lim\limits_{b \to 1}\frac{\Gamma(a)\Gamma(b)}{\Gamma(a+b)}\left((\psi_0(b) - \psi_0(a+b))^2 + \psi_1(b) - \psi_1(a+b)\right)\\&= \frac{1}{a}\left((\gamma + \psi_0(a+1))^2 + \frac{\pi^2}{6} - \psi_1(a+1)\right)\end{align*} Hence put $a=2$ we get $$\sum\limits_{n=1}^{\infty} \frac{H_{n+2}}{n(n+2)} =\frac{1}{2}\left [ \left ( \gamma +\underset{\psi _{0}\left ( 3 \right )}{\underbrace{\frac{3}{2}-\gamma}} \right )^{2}+\frac{\pi ^{2}}{6}-\underset{\psi _{1}\left ( 3 \right )}{\underbrace{\left (\frac{\pi ^{2}}{6}-\frac{5}{4} \right )} }\right ]=\frac{7}{4}$$