How to groupby consecutive values in pandas DataFrame
Series.diff
is another way to mark the group boundaries (a!=a.shift
means a.diff!=0
):
consecutives = df['a'].diff().ne(0).cumsum()
# 0 1
# 1 1
# 2 2
# 3 3
# 4 4
# 5 4
# Name: a, dtype: int64
And to turn these groups into a Series of lists (see the other answers for a list of lists), aggregate with groupby.agg
or groupby.apply
:
df['a'].groupby(consecutives).agg(list)
# a
# 1 [1, 1]
# 2 [-1]
# 3 [1]
# 4 [-1, -1]
# Name: a, dtype: object
Using groupby
from itertools
data from Jez
from itertools import groupby
[ list(group) for key, group in groupby(df.a.values.tolist())]
Out[361]: [[1, 1], [-1], [1], [-1, -1]]
You can use groupby
by custom Series
:
df = pd.DataFrame({'a': [1, 1, -1, 1, -1, -1]})
print (df)
a
0 1
1 1
2 -1
3 1
4 -1
5 -1
print ((df.a != df.a.shift()).cumsum())
0 1
1 1
2 2
3 3
4 4
5 4
Name: a, dtype: int32
for i, g in df.groupby([(df.a != df.a.shift()).cumsum()]):
print (i)
print (g)
print (g.a.tolist())
a
0 1
1 1
[1, 1]
2
a
2 -1
[-1]
3
a
3 1
[1]
4
a
4 -1
5 -1
[-1, -1]