How to have parallel convolutional layers in keras?
Here is an example of designing a network of parallel convolution and sub sampling layers in keras version 2. I hope this resolves your problem.
rows, cols = 100, 15
def create_convnet(img_path='network_image.png'):
input_shape = Input(shape=(rows, cols, 1))
tower_1 = Conv2D(20, (100, 5), padding='same', activation='relu')(input_shape)
tower_1 = MaxPooling2D((1, 11), strides=(1, 1), padding='same')(tower_1)
tower_2 = Conv2D(20, (100, 7), padding='same', activation='relu')(input_shape)
tower_2 = MaxPooling2D((1, 9), strides=(1, 1), padding='same')(tower_2)
tower_3 = Conv2D(20, (100, 10), padding='same', activation='relu')(input_shape)
tower_3 = MaxPooling2D((1, 6), strides=(1, 1), padding='same')(tower_3)
merged = keras.layers.concatenate([tower_1, tower_2, tower_3], axis=1)
merged = Flatten()(merged)
out = Dense(200, activation='relu')(merged)
out = Dense(num_classes, activation='softmax')(out)
model = Model(input_shape, out)
plot_model(model, to_file=img_path)
return model
The image of this network will look like
My approach is to create other model that defines all parallel convolution and pulling operations and concat all parallel result tensors to single output tensor. Now you can add this parallel model graph in your sequential model just like layer. Here is my solution, hope it solves your problem.
# variable initialization
from keras import Input, Model, Sequential
from keras.layers import Conv2D, MaxPooling2D, Concatenate, Activation, Dropout, Flatten, Dense
nb_filters =100
kernel_size= {}
kernel_size[0]= [3,3]
kernel_size[1]= [4,4]
kernel_size[2]= [5,5]
input_shape=(32, 32, 3)
pool_size = (2,2)
nb_classes =2
no_parallel_filters = 3
# create seperate model graph for parallel processing with different filter sizes
# apply 'same' padding so that ll produce o/p tensor of same size for concatination
# cancat all paralle output
inp = Input(shape=input_shape)
convs = []
for k_no in range(len(kernel_size)):
conv = Conv2D(nb_filters, kernel_size[k_no][0], kernel_size[k_no][1],
border_mode='same',
activation='relu',
input_shape=input_shape)(inp)
pool = MaxPooling2D(pool_size=pool_size)(conv)
convs.append(pool)
if len(kernel_size) > 1:
out = Concatenate()(convs)
else:
out = convs[0]
conv_model = Model(input=inp, output=out)
# add created model grapg in sequential model
model = Sequential()
model.add(conv_model) # add model just like layer
model.add(Conv2D(nb_filters, kernel_size[1][0], kernel_size[1][0]))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=pool_size))
model.add(Dropout(0.25))
model.add(Flatten(input_shape=input_shape))
model.add(Dense(128))
model.add(Activation('relu'))
model.add(Dense(128))
model.add(Activation('relu'))
model.add(Dropout(0.5))
model.add(Dense(nb_classes))
model.add(Activation('tanh'))
For more information refer similar question: Combining the outputs of multiple models into one model