How to join two DataFrames in Scala and Apache Spark?

This should perform better:

case class Match(matchId: Int, player1: String, player2: String)
case class Player(name: String, birthYear: Int)

val matches = Seq(
  Match(1, "John Wayne", "John Doe"),
  Match(2, "Ive Fish", "San Simon")
)

val players = Seq(
  Player("John Wayne", 1986),
  Player("Ive Fish", 1990),
  Player("San Simon", 1974),
  Player("John Doe", 1995)
)

val matchesDf = sqlContext.createDataFrame(matches)
val playersDf = sqlContext.createDataFrame(players)

matchesDf.registerTempTable("matches")
playersDf.registerTempTable("players")

sqlContext.sql(
  "select matchId, player1, player2, p1.birthYear, p2.birthYear, abs(p1.birthYear-p2.birthYear) " +
  "from matches m inner join  players p1 inner join players p2 " +
  "where m.player1 = p1.name and m.player2 = p2.name").show()

+-------+----------+---------+---------+---------+---+
|matchId|   player1|  player2|birthYear|birthYear|_c5|
+-------+----------+---------+---------+---------+---+
|      1|John Wayne| John Doe|     1986|     1995|  9|
|      2|  Ive Fish|San Simon|     1990|     1974| 16|
+-------+----------+---------+---------+---------+---+

I didn't find the way to express join of 3 tables in Scala DSL.


In Spark 2.0 and above, Spark provides several syntaxes to join two dataframes

join(right: Dataset[_]): DataFrame
join(right: Dataset[_], usingColumn: String): DataFrame
join(right: Dataset[_], usingColumns: Seq[String]): DataFrame
join(right: Dataset[_], usingColumns: Seq[String], joinType: String): DataFrame
join(right: Dataset[_], joinExprs: Column): DataFrame
join(right: Dataset[_], joinExprs: Column, joinType: String): DataFrame

All these Spark Join methods available in the Dataset class and these methods return DataFrame (note DataFrame = Dataset[Row])

All these methods take first arguments as a Dataset[_] meaning it also takes DataFrame.

To explain how to join, I will take emp and dept DataFrame

empDF.join(deptDF,empDF("emp_dept_id") ===  deptDF("dept_id"),"inner")
    .show(false)

If you have to join column names the same on both dataframes, you can even ignore join expression.


This is a solution using spark's dataframe functions:

import sqlContext.implicits._
import org.apache.spark.sql.Row
import org.apache.spark.sql.functions.abs

val matches = sqlContext.sparkContext.parallelize(Row(1, "John Wayne", "John Doe"), Row(2, "Ive Fish", "San Simon")))

val players = sqlContext.sparkContext.parallelize(Seq(
  Row("John Wayne", 1986),
  Row("Ive Fish", 1990),
  Row("San Simon", 1974),
  Row("John Doe", 1995)
))

val matchesDf = sqlContext.createDataFrame(matches, StructType(Seq(
  StructField("matchId", IntegerType, nullable = false),
  StructField("player1", StringType, nullable = false),
  StructField("player2", StringType, nullable = false)))
).as('matches)

val playersDf = sqlContext.createDataFrame(players, StructType(Seq(
  StructField("player", StringType, nullable = false),
  StructField("birthYear", IntegerType, nullable = false)
))).as('players)

matchesDf
  .join(playersDf, $"matches.player1" === $"players.player")
  .select($"matches.matchId" as "matchId", $"matches.player1" as "player1", $"matches.player2" as "player2", $"players.birthYear" as "player1BirthYear")
  .join(playersDf, $"player2" === $"players.player")
  .select($"matchId" as "MatchID", $"player1" as "Player1", $"player2" as "Player2", $"player1BirthYear" as "BYear_P1", $"players.birthYear" as "BYear_P2")
  .withColumn("Diff", abs('BYear_P2.minus('BYear_P1)))
  .show()

+-------+----------+---------+--------+--------+----+
|MatchID|   Player1|  Player2|BYear_P1|BYear_P2|Diff|
+-------+----------+---------+--------+--------+----+
|      1|John Wayne| John Doe|    1986|    1995|   9|
|      2|  Ive Fish|San Simon|    1990|    1974|  16|
+-------+----------+---------+--------+--------+----+