How to know the angle between two points?

The tangent of the angle between two points is defined as delta y / delta x That is (y2 - y1)/(x2-x1). This means that math.atan2(dy, dx) give the angle between the two points assuming that you know the base axis that defines the co-ordinates.

Your gun is assumed to be the (0, 0) point of the axes in order to calculate the angle in radians. Once you have that angle, then you can use the angle for the remainder of your calculations.

Note that since the angle is in radians, you need to use the math.pi instead of 180 degrees within your code. Also your test for more than 360 degrees (2*math.pi) is not needed. The test for negative (< 0) is incorrect as you then force it to 0, which forces the target to be on the x axis in the positive direction.

Your code to calculate the angle between the gun and the target is thus

myradians = math.atan2(targetY-gunY, targetX-gunX)

If you want to convert radians to degrees

mydegrees = math.degrees(myradians)

To convert from degrees to radians

myradians = math.radians(mydegrees)

Python ATAN2

The Python ATAN2 function is one of the Python Math function which is used to returns the angle (in radians) from the X -Axis to the specified point (y, x).

math.atan2()

Definition Returns the tangent(y,x) in radius.

Syntax
math.atan2(y,x)

Parameters
y,x=numbers

Examples
The return is:

>>> import math  
>>> math.atan2(88,34)  
1.202100424136847  
>>>

Specifically for working with shapely linestring objects, assuming your object (two points) is of the form (min long, min lat, max long, max lat)

from math import atan2,degrees
line = #Your-LineString-Object
lineList = list(line.coords)

def AngleBtw2Points(pointA, pointB):
  changeInX = pointB[0] - pointA[0]
  changeInY = pointB[1] - pointA[1]
  return degrees(atan2(changeInY,changeInX)) #remove degrees if you want your answer in radians

AngleBtw2Points(lineList[0],lineList[1]) 

In general, the angle of a vector (x, y) can be calculated by math.atan2(y, x). The vector can be defined by 2 points (x1, y1) and (x2, y2) on a line. Therefore the angle of the line is math.atan2(y2-y1, x2-x1). Be aware that the y-axis needs to be reversed (-y respectively y1-y2) because the y-axis is generally pointing up but in the PyGame coordinate system the y-axis is pointing down. The unit of the angle in the Python math module is Radian, but the unit of the angle in PyGame functions like pygame.transform.rotate() is Degree. Hence the angle has to be converted from Radians to Degrees by math.degrees:

import math

def angle_of_vector(x, y):
    return math.degrees(math.atan2(-y, x))

def angle_of_line(x1, y1, x2, y2):
    return math.degrees(math.atan2(-y1-y2, x2-x1))

This can be simplified by using the angle_to method of the pygame.math.Vector2 object. This method computes the angle between 2 vectors in the PyGame coordinate system in degrees. Therefore it is not necessary to reverse the y-axis and convert from radians to degrees. Just calculate the angle between the vector and (1, 0):

def angle_of_vector(x, y):
    return pygame.math.Vector2(x, y).angle_to((1, 0))

def angle_of_line(x1, y1, x2, y2):
    return angle_of_vector(x2-x1, y2-y1)

Minimale example:

import pygame
import math

def angle_of_vector(x, y):
    #return math.degrees(math.atan2(-y, x))            # 1: with math.atan
    return pygame.math.Vector2(x, y).angle_to((1, 0))  # 2: with pygame.math.Vector2.angle_to
    
def angle_of_line(x1, y1, x2, y2):
    #return math.degrees(math.atan2(-y1-y2, x2-x1))    # 1: math.atan
    return angle_of_vector(x2-x1, y2-y1)               # 2: pygame.math.Vector2.angle_to
    
pygame.init()
window = pygame.display.set_mode((400, 400))
clock = pygame.time.Clock()
font = pygame.font.SysFont(None, 50)

angle = 0
radius = 150
vec = (radius, 0)

run = True
while run:
    clock.tick(60)
    for event in pygame.event.get():
        if event.type == pygame.QUIT:
            run = False

    cpt = window.get_rect().center
    pt = cpt[0] + vec[0], cpt[1] + vec[1]
    angle = angle_of_vector(*vec)

    window.fill((255, 255, 255))
    pygame.draw.circle(window, (0, 0, 0), cpt, radius, 1)
    pygame.draw.line(window, (0, 255, 0), cpt, (cpt[0] + radius, cpt[1]), 3)
    pygame.draw.line(window, (255, 0, 0), cpt, pt, 3)
    text_surf = font.render(str(round(angle/5)*5) + "°", True, (255, 0, 0))
    text_surf.set_alpha(127)
    window.blit(text_surf, text_surf.get_rect(bottomleft = (cpt[0]+20, cpt[1]-20)))
    pygame.display.flip()

    angle = (angle + 1) % 360
    vec = radius * math.cos(angle*math.pi/180), radius * -math.sin(angle*math.pi/180)

pygame.quit()
exit()

angle_to can be used to calculate the angle between 2 vectors or lines:

def angle_between_vectors(x1, y1, x2, y2):
    return pygame.math.Vector2(x1, y1).angle_to((x2, y2))

Minimal example:

import pygame
import math

def angle_between_vectors(x1, y1, x2, y2):
    return pygame.math.Vector2(x1, y1).angle_to((x2, y2))

def angle_of_vector(x, y):
    return pygame.math.Vector2(x, y).angle_to((1, 0))    
    
pygame.init()
window = pygame.display.set_mode((400, 400))
clock = pygame.time.Clock()
font = pygame.font.SysFont(None, 50)

angle = 0
radius = 150
vec1 = (radius, 0)
vec2 = (radius, 0)

run = True
while run:
    clock.tick(60)
    for event in pygame.event.get():
        if event.type == pygame.QUIT:
            run = False

    cpt = window.get_rect().center
    pt1 = cpt[0] + vec1[0], cpt[1] + vec1[1]
    pt2 = cpt[0] + vec2[0], cpt[1] + vec2[1]
    angle = angle_between_vectors(*vec2, *vec1)

    window.fill((255, 255, 255))
    pygame.draw.circle(window, (0, 0, 0), cpt, radius, 1)
    pygame.draw.line(window, (0, 255, 0), cpt, pt1, 3)
    pygame.draw.line(window, (255, 0, 0), cpt, pt2, 3)
    text_surf = font.render(str(round(angle/5)*5) + "°", True, (255, 0, 0))
    text_surf.set_alpha(127)
    window.blit(text_surf, text_surf.get_rect(bottomleft = (cpt[0]+20, cpt[1]-20)))
    pygame.display.flip()

    angle1 = (angle_of_vector(*vec1) + 1/3) % 360
    vec1 = radius * math.cos(angle1*math.pi/180), radius * -math.sin(angle1*math.pi/180)
    angle2 = (angle_of_vector(*vec2) + 1) % 360
    vec2 = radius * math.cos(angle2*math.pi/180), radius * -math.sin(angle2*math.pi/180)

pygame.quit()
exit()