How to plot a bar graph from a pandas series?

IIUC you need Series.plot.bar:

#pandas 0.17.0 and above
s.plot.bar()
#pandas below 0.17.0
s.plot('bar')

Sample:

import pandas as pd
import matplotlib.pyplot as plt

s = pd.Series({16976: 2, 1: 39, 2: 49, 3: 187, 4: 159, 
               5: 158, 16947: 14, 16977: 1, 16948: 7, 16978: 1, 16980: 1},
               name='article_id')
print (s)
1         39
2         49
3        187
4        159
5        158
16947     14
16948      7
16976      2
16977      1
16978      1
16980      1
Name: article_id, dtype: int64


s.plot.bar()

plt.show()

graph


The new pandas API suggests the following way:

import pandas as pd

s = pd.Series({16976: 2, 1: 39, 2: 49, 3: 187, 4: 159, 
               5: 158, 16947: 14, 16977: 1, 16948: 7, 16978: 1, 16980: 1},
               name='article_id')

s.plot(kind="bar", figsize=(20,10))

If you are working on Jupyter, you don't need the matplotlib library.


Just use 'bar' in kind parameter of plot

Example

series = read_csv('BwsCount.csv', header=0, parse_dates=[0], index_col=0, squeeze=True, date_parser=parser)
series.plot(kind='bar')

Default value of kind is 'line' (ie. series.plot() --> will automatically plot line graph)

For your reference:

kind : str
        ‘line’ : line plot (default)
        ‘bar’ : vertical bar plot
        ‘barh’ : horizontal bar plot
        ‘hist’ : histogram
        ‘box’ : boxplot
        ‘kde’ : Kernel Density Estimation plot
        ‘density’ : same as ‘kde’
        ‘area’ : area plot
        ‘pie’ : pie plot