How to print result of clustering in sklearn

Time to help myself. After

km.fit(M)

we run

labels = km.predict(M)

which returns labels, numpy.ndarray. Number of elements in this array equals number of rows. And each element means that a row belongs to the cluster. For example: if first element is 5 it means that row 1 belongs to cluster 5. Lets put our rows in a dictionary of lists looking this way {cluster_number:[row1, row2, row3], ...}

# in row_dict we store actual meanings of rows, in my case it's russian words
clusters = {}
    n = 0
    for item in labels:
        if item in clusters:
            clusters[item].append(row_dict[n])
        else:
            clusters[item] = [row_dict[n]]
        n +=1

and print the result

for item in clusters:
    print "Cluster ", item
    for i in clusters[item]:
        print i