How to replace outliers with the 5th and 95th percentile values in R
I used this code to get what you need:
qn = quantile(df$value, c(0.05, 0.95), na.rm = TRUE)
df = within(df, { value = ifelse(value < qn[1], qn[1], value)
value = ifelse(value > qn[2], qn[2], value)})
where df
is your data.frame, and value
the column that contains your data.
You can do it in one line of code using squish()
:
d2 <- squish(d, quantile(d, c(.05, .95)))
In the scales library, look at ?squish
and ?discard
#--------------------------------
library(scales)
pr <- .95
q <- quantile(d, c(1-pr, pr))
d2 <- squish(d, q)
#---------------------------------
# Note: depending on your needs, you may want to round off the quantile, ie:
q <- round(quantile(d, c(1-pr, pr)))
example:
d <- 1:20
d
# [1] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
d2 <- squish(d, round(quantile(d, c(.05, .95))))
d2
# [1] 2 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 19
This would do it.
fun <- function(x){
quantiles <- quantile( x, c(.05, .95 ) )
x[ x < quantiles[1] ] <- quantiles[1]
x[ x > quantiles[2] ] <- quantiles[2]
x
}
fun( yourdata )