How to save a pandas DataFrame table as a png

The best solution to your problem is probably to first export your dataframe to HTML and then convert it using an HTML-to-image tool. The final appearance could be tweaked via CSS.

Popular options for HTML-to-image rendering include:

  • WeasyPrint
  • wkhtmltopdf/wkhtmltoimage

Let us assume we have a dataframe named df. We can generate one with the following code:

import string
import numpy as np
import pandas as pd


np.random.seed(0)  # just to get reproducible results from `np.random`
rows, cols = 5, 10
labels = list(string.ascii_uppercase[:cols])
df = pd.DataFrame(np.random.randint(0, 100, size=(5, 10)), columns=labels)
print(df)
#     A   B   C   D   E   F   G   H   I   J
# 0  44  47  64  67  67   9  83  21  36  87
# 1  70  88  88  12  58  65  39  87  46  88
# 2  81  37  25  77  72   9  20  80  69  79
# 3  47  64  82  99  88  49  29  19  19  14
# 4  39  32  65   9  57  32  31  74  23  35

Using WeasyPrint

This approach uses a pip-installable package, which will allow you to do everything using the Python ecosystem. One shortcoming of weasyprint is that it does not seem to provide a way of adapting the image size to its content. Anyway, removing some background from an image is relatively easy in Python / PIL, and it is implemented in the trim() function below (adapted from here). One also would need to make sure that the image will be large enough, and this can be done with CSS's @page size property.

The code follows:

import weasyprint as wsp
import PIL as pil


def trim(source_filepath, target_filepath=None, background=None):
    if not target_filepath:
        target_filepath = source_filepath
    img = pil.Image.open(source_filepath)
    if background is None:
        background = img.getpixel((0, 0))
    border = pil.Image.new(img.mode, img.size, background)
    diff = pil.ImageChops.difference(img, border)
    bbox = diff.getbbox()
    img = img.crop(bbox) if bbox else img
    img.save(target_filepath)


img_filepath = 'table1.png'
css = wsp.CSS(string='''
@page { size: 2048px 2048px; padding: 0px; margin: 0px; }
table, td, tr, th { border: 1px solid black; }
td, th { padding: 4px 8px; }
''')
html = wsp.HTML(string=df.to_html())
html.write_png(img_filepath, stylesheets=[css])
trim(img_filepath)

table_weasyprint


Using wkhtmltopdf/wkhtmltoimage

This approach uses an external open source tool and this needs to be installed prior to the generation of the image. There is also a Python package, pdfkit, that serves as a front-end to it (it does not waive you from installing the core software yourself), but I will not use it.

wkhtmltoimage can be simply called using subprocess (or any other similar means of running an external program in Python). One would also need to output to disk the HTML file.

The code follows:

import subprocess


df.to_html('table2.html')
subprocess.call(
    'wkhtmltoimage -f png --width 0 table2.html table2.png', shell=True)

table_wkhtmltoimage

and its aspect could be further tweaked with CSS similarly to the other approach.



There is actually a python library called dataframe_image Just do a

pip install dataframe_image

Do the imports

import pandas as pd
import numpy as np
import dataframe_image as dfi
df = pd.DataFrame(np.random.randn(6, 6), columns=list('ABCDEF'))

and style your table if you want by:

df_styled = df.style.background_gradient() #adding a gradient based on values in cell

and finally:

dfi.export(df_styled,"mytable.png")

Pandas allows you to plot tables using matplotlib (details here). Usually this plots the table directly onto a plot (with axes and everything) which is not what you want. However, these can be removed first:

import matplotlib.pyplot as plt
import pandas as pd
from pandas.table.plotting import table # EDIT: see deprecation warnings below

ax = plt.subplot(111, frame_on=False) # no visible frame
ax.xaxis.set_visible(False)  # hide the x axis
ax.yaxis.set_visible(False)  # hide the y axis

table(ax, df)  # where df is your data frame

plt.savefig('mytable.png')

The output might not be the prettiest but you can find additional arguments for the table() function here. Also thanks to this post for info on how to remove axes in matplotlib.


EDIT:

Here is a (admittedly quite hacky) way of simulating multi-indexes when plotting using the method above. If you have a multi-index data frame called df that looks like:

first  second
bar    one       1.991802
       two       0.403415
baz    one      -1.024986
       two      -0.522366
foo    one       0.350297
       two      -0.444106
qux    one      -0.472536
       two       0.999393
dtype: float64

First reset the indexes so they become normal columns

df = df.reset_index() 
df
    first second       0
0   bar    one  1.991802
1   bar    two  0.403415
2   baz    one -1.024986
3   baz    two -0.522366
4   foo    one  0.350297
5   foo    two -0.444106
6   qux    one -0.472536
7   qux    two  0.999393

Remove all duplicates from the higher order multi-index columns by setting them to an empty string (in my example I only have duplicate indexes in "first"):

df.ix[df.duplicated('first') , 'first'] = '' # see deprecation warnings below
df
  first second         0
0   bar    one  1.991802
1          two  0.403415
2   baz    one -1.024986
3          two -0.522366
4   foo    one  0.350297
5          two -0.444106
6   qux    one -0.472536
7          two  0.999393

Change the column names over your "indexes" to the empty string

new_cols = df.columns.values
new_cols[:2] = '',''  # since my index columns are the two left-most on the table
df.columns = new_cols 

Now call the table function but set all the row labels in the table to the empty string (this makes sure the actual indexes of your plot are not displayed):

table(ax, df, rowLabels=['']*df.shape[0], loc='center')

et voila:

enter image description here

Your not-so-pretty but totally functional multi-indexed table.

EDIT: DEPRECATION WARNINGS

As pointed out in the comments, the import statement for table:

from pandas.tools.plotting import table

is now deprecated in newer versions of pandas in favour of:

from pandas.plotting import table 

EDIT: DEPRECATION WARNINGS 2

The ix indexer has now been fully deprecated so we should use the loc indexer instead. Replace:

df.ix[df.duplicated('first') , 'first'] = ''

with

df.loc[df.duplicated('first') , 'first'] = ''

Tags:

Python

Pandas