How to select columns from groupby object in pandas?
You can also reset_index()
on your groupby result to get back a dataframe with the name column now accessible.
import pandas as pd
df = pd.DataFrame({"a":[1,1,3], "b":[4,5.5,6], "c":[7,8,9], "name":["hello","hello","foo"]})
df_grouped = df.groupby(["a", "name"]).median().reset_index()
df_grouped.name
0 hello
1 foo
Name: name, dtype: object
If you perform an operation on a single column the return will be a series with multiindex and you can simply apply pd.DataFrame
to it and then reset_index.
Set as_index = False
during groupby
df = pandas.DataFrame({"a":[1,1,3], "b":[4,5.5,6], "c":[7,8,9], "name":["hello","hello","foo"]})
df.groupby(["a", "name"] , as_index = False).median()
You need to get the index values, they are not columns. In this case level 1
df.groupby(["a", "name"]).median().index.get_level_values(1)
Out[2]:
Index([u'hello', u'foo'], dtype=object)
You can also pass the index name
df.groupby(["a", "name"]).median().index.get_level_values('name')
as this will be more intuitive than passing integer values.
You can convert the index values to a list by calling tolist()
df.groupby(["a", "name"]).median().index.get_level_values(1).tolist()
Out[5]:
['hello', 'foo']