How to solve this limit: $\lim_{x\to\infty}\sqrt{x+\sqrt{x}}-\sqrt{x-1}$
Let's start from your last line: $$\begin{align} \lim_{x\to+\infty}\frac{1+\sqrt{x}}{\sqrt{x+\sqrt{x}}+\sqrt{x-1}} &= \lim \frac{\sqrt x}{\sqrt x} \frac{\frac{1}{\sqrt x} + 1}{\sqrt{1 + \frac{1}{\sqrt x}} + \sqrt{1 - \frac{1}{ x}}} \\ &= \frac{1}{1 + 1} = \frac{1}{2} \end{align}$$ where we note that everywhere we have $\frac{1}{\sqrt x}$, those terms go to $0$ as $x \to \infty$. The method of factoring out the largest element in the numerator and denominator very often works. $\diamondsuit$
You may just observe that, as $x\to \infty$: $$ \frac{1+\sqrt{x}}{\sqrt{x+\sqrt{x}}+\sqrt{x-1}}\sim \frac{\sqrt{x}\left(1+\frac1{\sqrt{x}}\right)}{\sqrt{x}\left(\sqrt{1+\frac{1}{\sqrt{x}}}\right)+\sqrt{x}\left(\sqrt{1-\frac{1}{x}}\right)}\sim \frac12. $$
$$\begin{align}(x + x^{1/2})^{1/2} &= x^{1/2} + \frac 12 x^{-1/2}x^{1/2} -\frac 1 8 x^{-3/2}x+\cdots\\&=\sqrt x+\frac 12-\frac1{8\sqrt x} +\cdots\\ (x-1)^{1/2} &=\sqrt x -\frac 1{2\sqrt x}+\cdots \end{align}$$
therefore $$(x + x^{1/2})^{1/2} - (x-1)^{1/2}=\frac 1 2 + \frac 3{8\sqrt x} + \cdots \rightarrow \frac 12 \text{ as } x \to \infty.$$