How to store structs of different types without boxing
This cannot be done.
Alternative 1
However, you can emulate things, by using two Lists (List<MyMessageType1>
and List<MyMessageType2>
).
You then concoct one Super Index (possibly, just another array of ints (longs?)) to make it possible to (indirectly) address an item as if it were one list.
You might want to optimize the index (runlength encoding: store just the indexes where the backing array switches: this will also enormously help when iterating a subrange that is known to be contiguous in one of the backing arrays)
Lists use Array storage internally, so - you get no boxing - fast random access - blazing iteration with list.ForEach
Alternative 2
Look at the StructLayout attribute and somehow emulate a Union by doing all the manipulations. If you are really prepared to get your hands dirty, throw in unsafe {}
blocks (and compile with /unsafe) ... however, seriously consider P/Invoke a C DLL or use C++/CLI if it matters that much
Alternative 3 (added)
Because I really liked the fact that Marc Gravell pointed out you can use the StructLayout that I mentioned, to pinpoint all three members of a union .NET struct at the same offset; I thought I'd go the extra step and see whether I could make that a hell of a lot more leaky tranparent still. This comes pretty close to being transparent:
using System.Collections.Generic;
using System.Runtime.InteropServices;
namespace LeakyAbstractions
{
struct TypeA {}
struct TypeB {}
struct TypeC {}
[StructLayout(LayoutKind.Explicit)] internal struct AnyMessage {
[FieldOffset(0)] public TypeA A;
[FieldOffset(0)] public TypeB B;
[FieldOffset(0)] public TypeC C;
AnyMessage(TypeA a) { A = a; }
AnyMessage(TypeB b) { B = b; }
AnyMessage(TypeC c) { C = c; }
public static implicit operator TypeA(AnyMessage msg) { return msg.A; }
public static implicit operator TypeB(AnyMessage msg) { return msg.B; }
public static implicit operator TypeC(AnyMessage msg) { return msg.C; }
public static implicit operator AnyMessage(TypeA a) { return a; }
public static implicit operator AnyMessage(TypeB b) { return b; }
public static implicit operator AnyMessage(TypeC c) { return c; }
}
public class X
{
public static void Main(string[] s)
{
var anyMessages = new List<AnyMessage> {
new TypeA(),
new TypeB(),
new TypeC(),
};
TypeA a = anyMessages[0];
TypeB b = anyMessages[1];
TypeC c = anyMessages[2];
anyMessages.Add(a);
anyMessages.Add(b);
anyMessages.Add(c);
}
}
}
I'll leave the problem of discriminating this poor men's variant as an exercise to you. The simplist way would be to add a field to the AnyMessage
struct, but depending on the payload, other strategies might be much more (space/time) efficient.
My $0.02
Oh, I'd never actually do this, because it seems like overcomplicated. I'm assuming you have a valid reason to optimize this
PS. If you are asking this after reading my answer here (yesterday: Should I use a struct or a class to represent a Lat/Lng coordinate?), I'm going to snap-judge this premature optimization
Basically, you can't nicely;
- treating as
object
or an interface: boxed - wrap in a generic type with an abstract base-class: re-inventing a box
- reflection: uses
object
, boxed dynamic
: essentiallyobject
, boxed
There is the option, however, of encapsulating the object in a bigger struct, i.e.
struct AnyMessage {
public TypeA A;
public TypeB B;
public TypeC C;
}
struct TypeA {...}
struct TypeB {...}
struct TypeC {...}
now, this should work but hsa the downside of being much bigger, obviously. You might be able to work around this using explicit-layout to position them all at byte 0 (making a union), but I suspect this isn't allowed on xbox. But on regular .NET:
[StructLayout(LayoutKind.Explicit)] struct AnyMessage {
[FieldOffset(0)] public TypeA A;
[FieldOffset(0)] public TypeB B;
[FieldOffset(0)] public TypeC C;
}
You could create a queue that stores your structs without boxing, and then processes it using an interface with generic method like this:
interface IMessageProcessor
{
void Process<T>(T message) where T : struct, IMessage;
}
class MessageQueue
{
abstract class TypedMessageQueue
{
public abstract void ProcessNext(IMessageProcessor messageProcessor);
}
class TypedMessageQueue<T> : TypedMessageQueue where T : struct, IMessage
{
Queue<T> m_queue = new Queue<T>();
public void Enqueue(T message)
{
m_queue.Enqueue(message);
}
public override void ProcessNext(IMessageProcessor messageProcessor)
{
messageProcessor.Process(m_queue.Dequeue());
}
}
Queue<Type> m_queueSelectorQueue = new Queue<Type>();
Dictionary<Type, TypedMessageQueue> m_queues =
new Dictionary<Type, TypedMessageQueue>();
public void Enqueue<T>(T message) where T : struct, IMessage
{
TypedMessageQueue<T> queue;
if (!m_queues.ContainsKey(typeof(T)))
{
queue = new TypedMessageQueue<T>();
m_queues[typeof(T)] = queue;
}
else
queue = (TypedMessageQueue<T>)m_queues[typeof(T)];
queue.Enqueue(message);
m_queueSelectorQueue.Enqueue(typeof(T));
}
public void ProcessNext(IMessageProcessor messageProcessor)
{
var type = m_queueSelectorQueue.Dequeue();
m_queues[type].ProcessNext(messageProcessor);
}
}
You keep a separate queue for each type of message and using that you can avoid boxing of messages altogether, without any StructLayout
trickery and without knowing all possible message types beforehand.
I don't think you can. Generality comes at a cost. My advice is do not do premature optimization if what you are worried about is performance. If Its not and you really need copy by value behavior think about using inmutable types (a la System.String)