How to use a pandas data frame in a unit test
If you are using latest pandas, I think the following way is a bit cleaner:
import pandas as pd
pd.testing.assert_frame_equal(my_df, expected_df)
pd.testing.assert_series_equal(my_series, expected_series)
pd.testing.assert_index_equal(my_index, expected_index)
Each of these functions will raise AssertionError
if they are not "equal".
For more information and options: https://pandas.pydata.org/pandas-docs/stable/reference/general_utility_functions.html#testing-functions
Pandas has some utilities for testing.
import unittest
import pandas as pd
from pandas.util.testing import assert_frame_equal # <-- for testing dataframes
class DFTests(unittest.TestCase):
""" class for running unittests """
def setUp(self):
""" Your setUp """
TEST_INPUT_DIR = 'data/'
test_file_name = 'testdata.csv'
try:
data = pd.read_csv(INPUT_DIR + test_file_name,
sep = ',',
header = 0)
except IOError:
print 'cannot open file'
self.fixture = data
def test_dataFrame_constructedAsExpected(self):
""" Test that the dataframe read in equals what you expect"""
foo = pd.DataFrame()
assert_frame_equal(self.fixture, foo)