How to use LINQ to find all combinations of n items from a set of numbers?

Usage:

var results = new[] { 1, 2, 3, 4, 5, 6, 7, 8, 9 }.DifferentCombinations(3);

Code:

public static class Ex
{
    public static IEnumerable<IEnumerable<T>> DifferentCombinations<T>(this IEnumerable<T> elements, int k)
    {
        return k == 0 ? new[] { new T[0] } :
          elements.SelectMany((e, i) =>
            elements.Skip(i + 1).DifferentCombinations(k - 1).Select(c => (new[] {e}).Concat(c)));
    }
}

Though the above answer is very neat I came up with a solution which can be much faster depending on the collection size.

static class Combinations
{
    private static void InitIndexes(int[] indexes)
    {
        for (int i = 0; i < indexes.Length; i++)
        {
            indexes[i] = i;
        }
    }

    private static void SetIndexes(int[] indexes, int lastIndex, int count)
    {
        indexes[lastIndex]++;
        if (lastIndex > 0 && indexes[lastIndex] == count)
        {
            SetIndexes(indexes, lastIndex - 1, count - 1);
            indexes[lastIndex] = indexes[lastIndex - 1] + 1;
        }
    }

    private static List<T> TakeAt<T>(int[] indexes, IEnumerable<T> list)
    {
        List<T> selected = new List<T>();
        for (int i = 0; i < indexes.Length; i++)
        {
            selected.Add(list.ElementAt(indexes[i]));
        }
        return selected;
    }

    private static bool AllPlacesChecked(int[] indexes, int places)
    {
        for (int i = indexes.Length - 1; i >= 0; i--)
        {
            if (indexes[i] != places)
                return false;
            places--;
        }
        return true;
    }

    public static IEnumerable<List<T>> GetDifferentCombinations<T>(this IEnumerable<T> collection, int count)
    {
        int[] indexes = new int[count];
        int listCount = collection.Count();
        if (count > listCount)
            throw new InvalidOperationException($"{nameof(count)} is greater than the collection elements.");
        InitIndexes(indexes);
        do
        {
            var selected = TakeAt(indexes, collection);
            yield return selected;
            SetIndexes(indexes, indexes.Length - 1, listCount);
        }
        while (!AllPlacesChecked(indexes, listCount));

    }
}

Both answers are good but can be speeded up by eliminating memory allocations

For answer 1: Now 2.5x faster when calculating 5 from 60

Edit: EnumerableEx.Return is from the System.Interactive package.

public static IEnumerable<IEnumerable<T>> DifferentCombinations2<T>
    (this IEnumerable<T> elements, int k)
{
    return k == 0 
        ? EnumerableEx.Return(Enumerable.Empty<T>()) 
        : elements.SelectMany((e, i) => 
            elements.Skip(i + 1)
                .DifferentCombinations(k - 1)
                .Select(c => EnumerableEx.Return(e).Concat(c)));
}

Answer 2: Now 3x faster when calculating 5 from 60

static class Combinations
{
    private static void SetIndexes(int[] indexes, int lastIndex, int count)
    {
        indexes[lastIndex]++;
        if (lastIndex > 0 && indexes[lastIndex] == count)
        {
            SetIndexes(indexes, lastIndex - 1, count - 1);
            indexes[lastIndex] = indexes[lastIndex - 1] + 1;
        }
    }

    private static bool AllPlacesChecked(int[] indexes, int places)
    {
        for (int i = indexes.Length - 1; i >= 0; i--)
        {
            if (indexes[i] != places)
                return false;
            places--;
        }
        return true;
    }

public static IEnumerable<IEnumerable<T>> GetDifferentCombinations<T>(this IEnumerable<T> c, int count)
{
    var collection = c.ToList();
    int listCount = collection.Count();

    if (count > listCount)
        throw new InvalidOperationException($"{nameof(count)} is greater than the collection elements.");

    int[] indexes = Enumerable.Range(0, count).ToArray();

    do
    {
        yield return indexes.Select(i => collection[i]).ToList();

        SetIndexes(indexes, indexes.Length - 1, listCount);
    }
    while (!AllPlacesChecked(indexes, listCount));
}
}

This results in answer 2 being 5x faster than answer 1 for 5 from 60.