If, tossing a coin 400 times, we count the heads, what is the probability that the number of heads is [160,190]?
With $n = 400$ trials, the exact probability distribution for the number of heads $X$ observed is given by $X \sim {\rm Binomial}(n = 400, p = 1/2)$, assuming the coin is fair. Since calculating $\Pr[160 \le X \le 200]$ requires a computer, and $n$ is large, we can approximate the distribution of $X$ as ${\rm Normal}(\mu = np = 200, \sigma^2 = np(1-p) = 100)$. Thus $$\begin{align*} \Pr[160 \le X \le 200] &\approx \Pr[159.5 \le X \le 200.5] \\ &= \Pr\left[\frac{159.5 - 200}{\sqrt{100}} \le \frac{X - \mu}{\sigma} \le \frac{200.5 - 200}{\sqrt{100}} \right] \\ &= \Pr[-4.05 \le Z \le 0.05] \\ &= \Phi(0.05) - \Phi(-4.05) \\ &\approx 0.519913. \end{align*}$$ Note that we employed continuity correction for this calculation. The exact probability is $0.5199104479\ldots$.
A similar calculation applies for $\Pr[160 \le X \le 190]$. Using the normal approximation to the binomial, you would get an approximate value of $0.171031$. Using the exact distribution, the probability is $0.17103699497659\ldots$.