If $x_n = (\prod_{k=0}^n \binom{n}{k})^\frac{2}{n(n+1)}$ then $\lim_{n \to \infty} x_n = e$
Here is a completely different approach.
We will use $$ \lim_{n\to\infty}a_n^{1/n}=\lim_{n\to\infty}\frac{a_{n+1}}{a_n}\tag{1} $$ when the limit on the right exists.
Furthermore,
$$
\begin{align}
\prod_{k=0}^{n+1}\binom{n+1}{k}
&=\prod_{k=0}^n\binom{n}{k}\frac{n+1}{n-k+1}\\
&=\prod_{k=0}^n\binom{n}{k}\prod_{k=1}^{n+1}\frac{n+1}{k}\tag{2}
\end{align}
$$
Thus,
$$
\begin{align}
\lim_{n\to\infty}\prod_{k=0}^n\binom{n}{k}^{\frac2{n(n+1)}}
&=\lim_{n\to\infty}\left(\prod_{k=0}^n\binom{n}{k}^{\frac2n}\right)^{\frac1{n+1}}\tag{3}\\
&=\lim_{n\to\infty}\prod_{k=1}^{n+1}\left.\binom{n+1}{k}^{\frac2{n+1}}\middle/\prod_{k=1}^n\binom{n}{k}^{\frac2n}\right.\tag{4}\\
&=\lim_{n\to\infty}\left(\prod_{k=1}^{n+1}\left.\binom{n+1}{k}\middle/\prod_{k=1}^n\binom{n}{k}\right.\right)^{\frac2{n+1}}\prod_{k=0}^n\binom{n}{k}^{\frac{-2}{n(n+1)}}\tag{5}\\
&=\lim_{n\to\infty}\left(\prod_{k=1}^{n+1}\left.\binom{n+1}{k}\middle/\prod_{k=1}^n\binom{n}{k}\right.\right)^{\frac1{n+1}}\tag{6}\\
&=\lim_{n\to\infty}\left(\prod_{k=1}^{n+1}\frac{n+1}{k}\right)^{\frac1{n+1}}\tag{7}\\
&=\lim_{n\to\infty}\left.\prod_{k=1}^{n+1}\frac{n+1}{k}\middle/\prod_{k=1}^n\frac{n}{k}\right.\tag{8}\\
&=\lim_{n\to\infty}\left(1+\frac1n\right)^n\tag{9}\\[12pt]
&=e\tag{10}
\end{align}
$$
$(4)$: apply $(1)$
$(5)$: redistribute $\prod_{k=1}^n\binom{n}{k}^{-\frac2n}$
$(6)$: multiply both sides by the left side and take the square root
$(7)$: apply $(2)$
$(8)$: apply $(1)$
$(9)$: algebra
Using Riemann Sums,
$$
\begin{align}
&\lim_{n\to\infty}\log\left(\prod_{k=0}^n\binom{n}{k}^{\frac2{n(n+1)}}\right)\\
&=\lim_{n\to\infty}\frac2{n(n+1)}\sum_{k=0}^n\left(\sum_{j=1}^k\log(n-j+1)-\sum_{j=1}^k\log(j)\right)\tag{1}\\
&=\lim_{n\to\infty}2\sum_{k=0}^n\left(\sum_{j=1}^k\log\left(1-\frac{j}{n+1}\right)\frac1{n+1}-\sum_{j=1}^k\log\left(\frac{j}{n+1}\right)\frac1{n+1}\right)\frac1n\tag{2}\\
&=2\int_0^1\left(\int_0^x\log(1-t)\,\mathrm{d}t-\int_0^x\log(t)\,\mathrm{d}t\right)\,\mathrm{d}x\tag{3}\\
&=2\int_0^1\Big(-(1-x)\log(1-x)-x\log(x)\Big)\,\mathrm{d}x\tag{4}\\
&=-4\int_0^1x\log(x)\,\mathrm{d}x\tag{5}\\[6pt]
&=1\tag{6}
\end{align}
$$
$(1)$: $\binom{n}{k}=\frac{n(n-1)(n-2)\cdots(n-k+1)}{k(k-1)(k-2)\cdots1}$
$(2)$: distribute the $\frac1n$ and $\frac1{n+1}$; subtract $\frac{k}{n+1}\log(n+1)$ from each of the inner sums
$(3)$: $(2)$ is $\frac{n+1}{n}$ times the Riemann sum, on a $\frac1{n+1}\times\frac1{n+1}$ grid, for this double integral
$(4)$: apply $\int\log(x)\,\mathrm{d}x=x\log(x)-x+C$ twice
$(5)$: separate integral; change variables $x\mapsto1-x$; combine integrals
Therefore, $$ \lim_{n\to\infty}\prod_{k=0}^n\binom{n}{k}^{\frac2{n(n+1)}}=e\tag{7} $$