Implementing a recursive algorithm in pyspark to find pairings within a dataframe

Edit: As discussed in comments, to fix the issue mentioned in your update, we can convert student_id at each time into generalized sequence-id using dense_rank, go through Step 1 to 3 (using student column) and then use join to convert student at each time back to their original student_id. see below Step-0 and Step-4. in case there are less than 4 professors in a timeUnit, dimension will be resize to 4 in Numpy-end (using np_vstack() and np_zeros()), see the updated function find_assigned.

You can try pandas_udf and scipy.optimize.linear_sum_assignment(note: the backend method is the Hungarian algorithm as mentioned by @cronoik in the main comments), see below:

from pyspark.sql.functions import pandas_udf, PandasUDFType, first, expr, dense_rank
from pyspark.sql.types import StructType
from scipy.optimize import linear_sum_assignment
from pyspark.sql import Window
import numpy as np

df = spark.createDataFrame([
    ('1596048041', 'p1', 's1', 0.7), ('1596048041', 'p1', 's2', 0.5), ('1596048041', 'p1', 's3', 0.3),
    ('1596048041', 'p1', 's4', 0.2), ('1596048041', 'p2', 's1', 0.9), ('1596048041', 'p2', 's2', 0.1),
    ('1596048041', 'p2', 's3', 0.15), ('1596048041', 'p2', 's4', 0.2), ('1596048041', 'p3', 's1', 0.2),
    ('1596048041', 'p3', 's2', 0.3), ('1596048041', 'p3', 's3', 0.4), ('1596048041', 'p3', 's4', 0.8),
    ('1596048041', 'p4', 's1', 0.2), ('1596048041', 'p4', 's2', 0.3), ('1596048041', 'p4', 's3', 0.35),
    ('1596048041', 'p4', 's4', 0.4)
] , ['time', 'professor_id', 'student_id', 'score'])

N = 4
cols_student = [*range(1,N+1)]

Step-0: add an extra column student, and create a new dataframe df3 with all unique combos of time + student_id + student.

w1 = Window.partitionBy('time').orderBy('student_id')

df = df.withColumn('student', dense_rank().over(w1))
+----------+------------+----------+-----+-------+                              
|      time|professor_id|student_id|score|student|
+----------+------------+----------+-----+-------+
|1596048041|          p1|        s1|  0.7|      1|
|1596048041|          p2|        s1|  0.9|      1|
|1596048041|          p3|        s1|  0.2|      1|
|1596048041|          p4|        s1|  0.2|      1|
|1596048041|          p1|        s2|  0.5|      2|
|1596048041|          p2|        s2|  0.1|      2|
|1596048041|          p3|        s2|  0.3|      2|
|1596048041|          p4|        s2|  0.3|      2|
|1596048041|          p1|        s3|  0.3|      3|
|1596048041|          p2|        s3| 0.15|      3|
|1596048041|          p3|        s3|  0.4|      3|
|1596048041|          p4|        s3| 0.35|      3|
|1596048041|          p1|        s4|  0.2|      4|
|1596048041|          p2|        s4|  0.2|      4|
|1596048041|          p3|        s4|  0.8|      4|
|1596048041|          p4|        s4|  0.4|      4|
+----------+------------+----------+-----+-------+

df3 = df.select('time','student_id','student').dropDuplicates()
+----------+----------+-------+                                                 
|      time|student_id|student|
+----------+----------+-------+
|1596048041|        s1|      1|
|1596048041|        s2|      2|
|1596048041|        s3|      3|
|1596048041|        s4|      4|
+----------+----------+-------+

Step-1: use pivot to find the matrix of professors vs students, notice we set negative of scores to the values of pivot so that we can use scipy.optimize.linear_sum_assignment to find the min cost of an assignment problem:

df1 = df.groupby('time','professor_id').pivot('student', cols_student).agg(-first('score'))
+----------+------------+----+----+-----+----+
|      time|professor_id|   1|   2|    3|   4|
+----------+------------+----+----+-----+----+
|1596048041|          p4|-0.2|-0.3|-0.35|-0.4|
|1596048041|          p2|-0.9|-0.1|-0.15|-0.2|
|1596048041|          p1|-0.7|-0.5| -0.3|-0.2|
|1596048041|          p3|-0.2|-0.3| -0.4|-0.8|
+----------+------------+----+----+-----+----+

Step-2: use pandas_udf and scipy.optimize.linear_sum_assignment to get column indices and then assign the corresponding column name to a new column assigned:

# returnSchema contains one more StringType column `assigned` than schema from the input pdf:
schema = StructType.fromJson(df1.schema.jsonValue()).add('assigned', 'string')

# since the # of students are always N, we can use np.vstack to set the N*N matrix
# below `n` is the number of professors/rows in pdf
# sz is the size of input Matrix, sz=4 in this example
def __find_assigned(pdf, sz):
  cols = pdf.columns[2:]
  n = pdf.shape[0]
  n1 = pdf.iloc[:,2:].fillna(0).values
  _, idx = linear_sum_assignment(np.vstack((n1,np.zeros((sz-n,sz)))))
  return pdf.assign(assigned=[cols[i] for i in idx][:n])

find_assigned = pandas_udf(lambda x: __find_assigned(x,N), schema, PandasUDFType.GROUPED_MAP)

df2 = df1.groupby('time').apply(find_assigned)
+----------+------------+----+----+-----+----+--------+
|      time|professor_id|   1|   2|    3|   4|assigned|
+----------+------------+----+----+-----+----+--------+
|1596048041|          p4|-0.2|-0.3|-0.35|-0.4|       3|
|1596048041|          p2|-0.9|-0.1|-0.15|-0.2|       1|
|1596048041|          p1|-0.7|-0.5| -0.3|-0.2|       2|
|1596048041|          p3|-0.2|-0.3| -0.4|-0.8|       4|
+----------+------------+----+----+-----+----+--------+

Note: per suggestion from @OluwafemiSule, we can use the parameter maximize instead of negate the score values. this parameter is available SciPy 1.4.0+:

  _, idx = linear_sum_assignment(np.vstack((n1,np.zeros((N-n,N)))), maximize=True)

Step-3: use SparkSQL stack function to normalize the above df2, negate the score values and filter rows with score is NULL. the desired is_match column should have assigned==student:

df_new = df2.selectExpr(
  'time',
  'professor_id',
  'assigned',
  'stack({},{}) as (student, score)'.format(len(cols_student), ','.join("int('{0}'), -`{0}`".format(c) for c in cols_student))
) \
.filter("score is not NULL") \
.withColumn('is_match', expr("assigned=student"))

df_new.show()
+----------+------------+--------+-------+-----+--------+
|      time|professor_id|assigned|student|score|is_match|
+----------+------------+--------+-------+-----+--------+
|1596048041|          p4|       3|      1|  0.2|   false|
|1596048041|          p4|       3|      2|  0.3|   false|
|1596048041|          p4|       3|      3| 0.35|    true|
|1596048041|          p4|       3|      4|  0.4|   false|
|1596048041|          p2|       1|      1|  0.9|    true|
|1596048041|          p2|       1|      2|  0.1|   false|
|1596048041|          p2|       1|      3| 0.15|   false|
|1596048041|          p2|       1|      4|  0.2|   false|
|1596048041|          p1|       2|      1|  0.7|   false|
|1596048041|          p1|       2|      2|  0.5|    true|
|1596048041|          p1|       2|      3|  0.3|   false|
|1596048041|          p1|       2|      4|  0.2|   false|
|1596048041|          p3|       4|      1|  0.2|   false|
|1596048041|          p3|       4|      2|  0.3|   false|
|1596048041|          p3|       4|      3|  0.4|   false|
|1596048041|          p3|       4|      4|  0.8|    true|
+----------+------------+--------+-------+-----+--------+

Step-4: use join to convert student back to student_id (use broadcast join if possible):

df_new = df_new.join(df3, on=["time", "student"])
+----------+-------+------------+--------+-----+--------+----------+            
|      time|student|professor_id|assigned|score|is_match|student_id|
+----------+-------+------------+--------+-----+--------+----------+
|1596048041|      1|          p1|       2|  0.7|   false|        s1|
|1596048041|      2|          p1|       2|  0.5|    true|        s2|
|1596048041|      3|          p1|       2|  0.3|   false|        s3|
|1596048041|      4|          p1|       2|  0.2|   false|        s4|
|1596048041|      1|          p2|       1|  0.9|    true|        s1|
|1596048041|      2|          p2|       1|  0.1|   false|        s2|
|1596048041|      3|          p2|       1| 0.15|   false|        s3|
|1596048041|      4|          p2|       1|  0.2|   false|        s4|
|1596048041|      1|          p3|       4|  0.2|   false|        s1|
|1596048041|      2|          p3|       4|  0.3|   false|        s2|
|1596048041|      3|          p3|       4|  0.4|   false|        s3|
|1596048041|      4|          p3|       4|  0.8|    true|        s4|
|1596048041|      1|          p4|       3|  0.2|   false|        s1|
|1596048041|      2|          p4|       3|  0.3|   false|        s2|
|1596048041|      3|          p4|       3| 0.35|    true|        s3|
|1596048041|      4|          p4|       3|  0.4|   false|        s4|
+----------+-------+------------+--------+-----+--------+----------+

df_new = df_new.drop("student", "assigned")