Import CSV file as a pandas DataFrame
To read a CSV file as a pandas DataFrame, you'll need to use pd.read_csv
.
But this isn't where the story ends; data exists in many different formats and is stored in different ways so you will often need to pass additional parameters to read_csv
to ensure your data is read in properly.
Here's a table listing common scenarios encountered with CSV files along with the appropriate argument you will need to use. You will usually need all or some combination of the arguments below to read in your data.
┌───────────────────────────────────────────────────────┬───────────────────────┬────────────────────────────────────────────────────┐
│ pandas Implementation │ Argument │ Description │
├───────────────────────────────────────────────────────┼───────────────────────┼────────────────────────────────────────────────────┤
│ pd.read_csv(..., sep=';') │ sep/delimiter │ Read CSV with different separator¹ │
│ pd.read_csv(..., delim_whitespace=True) │ delim_whitespace │ Read CSV with tab/whitespace separator │
│ pd.read_csv(..., encoding='latin-1') │ encoding │ Fix UnicodeDecodeError while reading² │
│ pd.read_csv(..., header=False, names=['x', 'y', 'z']) │ header and names │ Read CSV without headers³ │
│ pd.read_csv(..., index_col=[0]) │ index_col │ Specify which column to set as the index⁴ │
│ pd.read_csv(..., usecols=['x', 'y']) │ usecols │ Read subset of columns │
│ pd.read_csv(..., thousands='.', decimal=',') │ thousands and decimal │ Numeric data is in European format (eg., 1.234,56) │
└───────────────────────────────────────────────────────┴───────────────────────┴────────────────────────────────────────────────────┘
Footnotes
By default,
read_csv
uses a C parser engine for performance. The C parser can only handle single character separators. If your CSV has a multi-character separator, you will need to modify your code to use the'python'
engine. You can also pass regular expressions:df = pd.read_csv(..., sep=r'\s*\|\s*', engine='python')
UnicodeDecodeError
occurs when the data was stored in one encoding format but read in a different, incompatible one. Most common encoding schemes are'utf-8'
and'latin-1'
, your data is likely to fit into one of these.
header=False
specifies that the first row in the CSV is a data row rather than a header row, and thenames=[...]
allows you to specify a list of column names to assign to the DataFrame when it is created."Unnamed: 0" occurs when a DataFrame with an un-named index is saved to CSV and then re-read after. Instead of having to fix the issue while reading, you can also fix the issue when writing by using
df.to_csv(..., index=False)
There are other arguments I've not mentioned here, but these are the ones you'll encounter most frequently.
pandas.read_csv
to the rescue:
import pandas as pd
df = pd.read_csv("data.csv")
print(df)
This outputs a pandas DataFrame
:
Date price factor_1 factor_2
0 2012-06-11 1600.20 1.255 1.548
1 2012-06-12 1610.02 1.258 1.554
2 2012-06-13 1618.07 1.249 1.552
3 2012-06-14 1624.40 1.253 1.556
4 2012-06-15 1626.15 1.258 1.552
5 2012-06-16 1626.15 1.263 1.558
6 2012-06-17 1626.15 1.264 1.572