Improper integral of natural log over a quadratic
Substitute $u=\log(x),$ giving $$ \int_0^\infty \frac{\log(x)}{x^2+x+1}dx = \int_{-\infty}^\infty \frac{u}{e^u+1+e^{-u}}du = 0$$ since the integrand is odd. (And the integral exists since the integrand decays exponentially in both directions.)
Considering $$\int_{0}^{\infty}\frac{\ln{x}}{x^2+x+1}\,dx=\int_{0}^{1}\frac{\ln{x}}{x^2+x+1}\,dx+\int_{1}^{\infty}\frac{\ln{x}}{x^2+x+1}\,dx$$ For the second integral, change variable $x=\frac 1y$, simplify and admire !
First of all, the integral is convergent because :
$\displaystyle{\frac{\ln(x)}{x^2+x+1}\underset{0}{\sim}\ln(x)}$
$\displaystyle{\frac{\ln(x)}{x^2+x+1}\underset{+\infty}{=}o\left(\frac1{x^{3/2}}\right)}$
Now consider change of variable $\displaystyle{t=\frac 1x}$
You will get :
$$\int_1^\infty\frac{\ln(x)}{x^2+x+1}\,dx=\int_1^0\frac{-\ln(t)}{\frac1{t^2}+\frac 1t+1}\frac{-dt}{t^2}=-\int_0^1\frac{\ln(t)}{t^2+t+1}\,dt$$
This proves that :
$$\boxed{\int_0^{+\infty}\frac{\ln(x)}{x^2+x+1}\,dx=0}$$
It should be added that, more generally (and for the same reasons) :
$$\forall a\in(-2,+\infty),\,\int_0^{+\infty}\frac{\ln(x)}{x^2+ax+1}\,dx=0$$