Innocent-looking Diophantine equation with smallest solution of the order $10^{50}$?

The smallest (in terms of naive height) solution of $y^2=x^3+877x$ is

$$\left(\frac{375494528127162193105504069942092792346201}{6215987776871505425463220780697238044100},\frac{256256267988926809388776834045513089648669153204356603464786949}{490078023219787588959802933995928925096061616470779979261000}\right)$$

This is an example of Bremner and Cassels. Thus, the smallest solution of $ZY^2=X^3+877XZ^2$ is $$(29604565304828237474403861024284371796799791624792913256602210,256256267988926809388776834045513089648669153204356603464786949,490078023219787588959802933995928925096061616470779979261000).$$ The $X$ coordinate is $>2\cdot 10^{61}$.


Here is a general comment about the mechanism behind this phenomenon. By Matiyasevich's theorem, the problem of determining whether a Diophantine equation has a solution is undecidable. This implies that it is not possible to give a computable a priori bound on the size of the solutions to a Diophantine equation (since, given such a bound, we could solve Diophantine equations by checking all solutions up to the bound), so it follows that the size of the smallest solution to a Diophantine equation eventually exceeds any computable function of the Diophantine equation.


Here's a monster. The smallest integer solution to,

$$(x + a)^7 + (x - a)^7 + (2x + b)^7 + (2x - b)^7 + \\(-x - c)^7 + (-x + c)^7 + (-2x - d)^7 + (-2x + d)^7 \\= 14^7(a^6 + 2b^6 - c^6 - 2d^6)^7$$

has $x$ with $\color{red}{1179\; \text{digits}}$. The variables $a,b,c,d$ are,

$$292565171139318137956759657471297,\\ 863420822620431936290192229011966,\\ 534407060429869176086407612538177,\\ 859793943610761912321826231621886$$

and

$$\small{x =481563304865430516682423843723465575123177045754683810551700\dots \approx \color{red}{4.81 \times 10^{1178}}}$$

Ajai Choudhry found this using an elliptic curve, which may explain the large values.