Integral Representation of the Zeta Function: $\zeta(s)=\frac1{\Gamma(s)}\int_{0}^\infty \frac{x^{s-1}}{e^x-1}dx$
Recall that for $t>1$, $$\frac{1}{t-1}=\sum_{n=1}^\infty t^{-n}$$
Then substitute $t=e^{x}$ for $x>0$.
Then substituting $x=\frac{v}{n}$ in the $n$th term of the integral, you get:
$$\int_0^{\infty} x^{s-1}e^{-nx}\,dx=\frac{1}{n^s}\int_0^\infty v^{s-1}e^{-v}dv = \frac{1}{n^s}\Gamma(s)$$