Integral sign not covering entire fraction
While it's possible to make the integral symbol larger, I'd say that a much better solution would consist of making the denominator term smaller.
\documentclass{article}
\begin{document}
\[
\frac{3Q}{2\pi z^2} \int\frac{1}{[1+(x^2+y^2)/z^2{]}^{5/2}}
\]
\end{document}
Addendum: If it's important not to compresss the denominator material, consider using b^{-1}
notation instead of \frac{1}{b}
notation:
\documentclass{article}
\begin{document}
\[
\frac{3Q}{2\pi z^2} \int \biggl[ 1 + \frac{x^2 + y^2}{z^2} \biggr]^{-5/2}
\]
\end{document}
It is very uncharacteristic to typeset an integral sign uncentered at horizontal math axis. All variable-with math elements like braces, big operators etc are centered in traditional typography.
But if you wish such behaviour then, of course, it is possible. TeX is flexible. You can try the following macros, where \flexibleint
macro is created. Usage is:
\flexibleint_a^b {integrand} or \flexibleint {integrand}
The integrand must be in braces.
\def\tmp#1 #2\relax{#1}
\setbox0=\hbox{$\xdef\intfont{%
\expandafter\tmp\fontname\textfont3\expandafter\space\space\relax}$}
\font\tmp=\intfont\space at10pt\relax
\setbox0=\hbox{$\textfont3=\tmp \displaystyle \int$}
\dimen0=\ht0 \advance\dimen0 by\dp0 \divide\dimen0 by10
\xdef\intsize{\the\dimen0}
\def\dividedimen (#1/#2){\expandafter\ignorept\the
\dimexpr\numexpr\number\dimexpr#1\relax
*65536/\number\dimexpr#2\relax\relax sp\relax
}
{\lccode`\?=`\p \lccode`\!=`\t \lowercase{\gdef\ignorept#1?!{#1}}}
\def\flexibleint{\def\fxintL{}\def\fxintU{}\futurelet\next\fxintA}
\def\fxintA{\ifx\next_\expandafter\fxintB\else\expandafter\fxintC\fi}
\def\fxintB_#1{\def\fxintL{#1}\fxintC}
\def\fxintC{\futurelet\next\fxintD}
\def\fxintD{\ifx\next^\expandafter\fxintE\else\expandafter\fxintF\fi}
\def\fxintE^#1{\def\fxintU{#1}\fxintF}
\def\fxintF#1{\begingroup
\setbox0=\hbox{$\displaystyle{#1}$}%
\dimen0=\ht0 \advance\dimen0 by\dp0
\setbox1=\hbox{$\vcenter{\copy0}$}%
\font\tmp=\intfont\space at\dividedimen(\dimen0/\intsize)pt
\lower\dimexpr\dp0-\dp1\hbox{%
$\textfont3=\tmp \displaystyle\int_{\fxintL}^{\fxintU}$}
\box0
\endgroup
}
$$
X = \sum_{i=0}^\infty
\flexibleint_a^b {u\over {\displaystyle v + {\strut x\over y}}}
$$
\bye
How it works: First, the fontname of \textfont3
(where \int
sign is expected) is extracted at 10pt size (into \intfont
) and the \int
in \displaystyle
at 10pt is measured (in \intsize
).
Secondly, the scanning of _a
or ^b
is performed using auxiliary macros \fxintA
to \fxintE
.
Finally, the integrand in box is measured, its vertically different positions is compared using \box0
and \box1
(the second box is \vcenter
ed), the font for \textfont3
scaled to desired size is temporary loaded and the flexible integral is typeset.