Interactively validating Entry widget content in tkinter
Use a Tkinter.StringVar
to track the value of the Entry
widget. You can validate the value of the StringVar
by setting a trace
on it.
Here's a short working program that accepts only valid floats in the Entry
widget.
try:
from tkinter import *
except ImportError:
from Tkinter import * # Python 2
root = Tk()
sv = StringVar()
def validate_float(var):
new_value = var.get()
try:
new_value == '' or float(new_value)
validate_float.old_value = new_value
except:
var.set(validate_float.old_value)
validate_float.old_value = '' # Define function attribute.
# trace wants a callback with nearly useless parameters, fixing with lambda.
sv.trace('w', lambda nm, idx, mode, var=sv: validate_float(var))
ent = Entry(root, textvariable=sv)
ent.pack()
ent.focus_set()
root.mainloop()
Bryan's answer is correct, however no one mentioned the 'invalidcommand' attribute of the tkinter widget.
A good explanation is here: http://infohost.nmt.edu/tcc/help/pubs/tkinter/web/entry-validation.html
Text copy/pasted in case of broken link
The Entry widget also supports an invalidcommand option that specifies a callback function that is called whenever the validatecommand returns False. This command may modify the text in the widget by using the .set() method on the widget's associated textvariable. Setting up this option works the same as setting up the validatecommand. You must use the .register() method to wrap your Python function; this method returns the name of the wrapped function as a string. Then you will pass as the value of the invalidcommand option either that string, or as the first element of a tuple containing substitution codes.
Note: There is only one thing that I cannot figure out how to do: If you add validation to an entry, and the user selects a portion of the text and types a new value, there is no way to capture the original value and reset the entry. Here's an example
- Entry is designed to only accept integers by implementing 'validatecommand'
- User enters 1234567
- User selects '345' and presses 'j'. This is registered as two actions: deletion of '345', and insertion of 'j'. Tkinter ignores the deletion and acts only on the insertion of 'j'. 'validatecommand' returns False, and the values passed to the 'invalidcommand' function are as follows: %d=1, %i=2, %P=12j67, %s=1267, %S=j
- If the code does not implement an 'invalidcommand' function, the 'validatecommand' function will reject the 'j' and the result will be 1267. If the code does implement an 'invalidcommand' function, there is no way to recover the original 1234567.
The correct answer is, use the validatecommand
attribute of the widget. Unfortunately this feature is severely under-documented in the Tkinter world, though it is quite sufficiently documented in the Tk world. Even though it's not documented well, it has everything you need to do validation without resorting to bindings or tracing variables, or modifying the widget from within the validation procedure.
The trick is to know that you can have Tkinter pass in special values to your validate command. These values give you all the information you need to know to decide on whether the data is valid or not: the value prior to the edit, the value after the edit if the edit is valid, and several other bits of information. To use these, though, you need to do a little voodoo to get this information passed to your validate command.
Note: it's important that the validation command returns either True
or False
. Anything else will cause the validation to be turned off for the widget.
Here's an example that only allows lowercase. It also prints the values of all of the special values for illustrative purposes. They aren't all necessary; you rarely need more than one or two.
import tkinter as tk # python 3.x
# import Tkinter as tk # python 2.x
class Example(tk.Frame):
def __init__(self, parent):
tk.Frame.__init__(self, parent)
# valid percent substitutions (from the Tk entry man page)
# note: you only have to register the ones you need; this
# example registers them all for illustrative purposes
#
# %d = Type of action (1=insert, 0=delete, -1 for others)
# %i = index of char string to be inserted/deleted, or -1
# %P = value of the entry if the edit is allowed
# %s = value of entry prior to editing
# %S = the text string being inserted or deleted, if any
# %v = the type of validation that is currently set
# %V = the type of validation that triggered the callback
# (key, focusin, focusout, forced)
# %W = the tk name of the widget
vcmd = (self.register(self.onValidate),
'%d', '%i', '%P', '%s', '%S', '%v', '%V', '%W')
self.entry = tk.Entry(self, validate="key", validatecommand=vcmd)
self.text = tk.Text(self, height=10, width=40)
self.entry.pack(side="top", fill="x")
self.text.pack(side="bottom", fill="both", expand=True)
def onValidate(self, d, i, P, s, S, v, V, W):
self.text.delete("1.0", "end")
self.text.insert("end","OnValidate:\n")
self.text.insert("end","d='%s'\n" % d)
self.text.insert("end","i='%s'\n" % i)
self.text.insert("end","P='%s'\n" % P)
self.text.insert("end","s='%s'\n" % s)
self.text.insert("end","S='%s'\n" % S)
self.text.insert("end","v='%s'\n" % v)
self.text.insert("end","V='%s'\n" % V)
self.text.insert("end","W='%s'\n" % W)
# Disallow anything but lowercase letters
if S == S.lower():
return True
else:
self.bell()
return False
if __name__ == "__main__":
root = tk.Tk()
Example(root).pack(fill="both", expand=True)
root.mainloop()
For more information about what happens under the hood when you call the register
method, see Why is calling register() required for tkinter input validation?
For the canonical documentation see the Validation section of the Tcl/Tk Entry man page
After studying and experimenting with Bryan's code, I produced a minimal version of input validation. The following code will put up an Entry box and only accept numeric digits.
from tkinter import *
root = Tk()
def testVal(inStr,acttyp):
if acttyp == '1': #insert
if not inStr.isdigit():
return False
return True
entry = Entry(root, validate="key")
entry['validatecommand'] = (entry.register(testVal),'%P','%d')
entry.pack()
root.mainloop()
Perhaps I should add that I am still learning Python and I will gladly accept any and all comments/suggestions.