Is there a built-in way to convert IEnumerator to IEnumerable

EnumeratorEnumerable<T>

A threadsafe, resettable adaptor from IEnumerator<T> to IEnumerable<T>

I use Enumerator parameters like in C++ forward_iterator concept.

I agree that this can lead to confusion as too many people will indeed assume Enumerators are /like/ Enumerables, but they are not.

However, the confusion is fed by the fact that IEnumerator contains the Reset method. Here is my idea of the most correct implementation. It leverages the implementation of IEnumerator.Reset()

A major difference between an Enumerable and and Enumerator is, that an Enumerable might be able to create several Enumerators simultaneously. This implementation puts a whole lot of work into making sure that this never happens for the EnumeratorEnumerable<T> type. There are two EnumeratorEnumerableModes:

  • Blocking (meaning that a second caller will simply wait till the first enumeration is completed)
  • NonBlocking (meaning that a second (concurrent) request for an enumerator simply throws an exception)

Note 1: 74 lines are implementation, 79 lines are testing code :)

Note 2: I didn't refer to any unit testing framework for SO convenience

using System;
using System.Diagnostics;
using System.Linq;
using System.Collections;
using System.Collections.Generic;
using System.Threading;

namespace EnumeratorTests
{
    public enum EnumeratorEnumerableMode
    {
        NonBlocking,
        Blocking,
    }

    public sealed class EnumeratorEnumerable<T> : IEnumerable<T>
    {
        #region LockingEnumWrapper

        public sealed class LockingEnumWrapper : IEnumerator<T>
        {
            private static readonly HashSet<IEnumerator<T>> BusyTable = new HashSet<IEnumerator<T>>();
            private readonly IEnumerator<T> _wrap;

            internal LockingEnumWrapper(IEnumerator<T> wrap, EnumeratorEnumerableMode allowBlocking) 
            {
                _wrap = wrap;

                if (allowBlocking == EnumeratorEnumerableMode.Blocking)
                    Monitor.Enter(_wrap);
                else if (!Monitor.TryEnter(_wrap))
                    throw new InvalidOperationException("Thread conflict accessing busy Enumerator") {Source = "LockingEnumWrapper"};

                lock (BusyTable)
                {
                    if (BusyTable.Contains(_wrap))
                        throw new LockRecursionException("Self lock (deadlock) conflict accessing busy Enumerator") { Source = "LockingEnumWrapper" };
                    BusyTable.Add(_wrap);
                }

                // always implicit Reset
                _wrap.Reset();
            }

            #region Implementation of IDisposable and IEnumerator

            public void Dispose()
            {
                lock (BusyTable)
                    BusyTable.Remove(_wrap);

                Monitor.Exit(_wrap);
            }
            public bool MoveNext()      { return _wrap.MoveNext(); }
            public void Reset()         { _wrap.Reset(); }
            public T Current            { get { return _wrap.Current; } }
            object IEnumerator.Current  { get { return Current; } }

            #endregion
        }

        #endregion

        private readonly IEnumerator<T> _enumerator;
        private readonly EnumeratorEnumerableMode _allowBlocking;

        public EnumeratorEnumerable(IEnumerator<T> e, EnumeratorEnumerableMode allowBlocking)
        {
            _enumerator = e;
            _allowBlocking = allowBlocking;
        }

        private LockRecursionPolicy a;
        public IEnumerator<T> GetEnumerator()
        {
            return new LockingEnumWrapper(_enumerator, _allowBlocking);
        }

        IEnumerator IEnumerable.GetEnumerator()
        {
            return GetEnumerator();
        }
    }

    class TestClass
    {
        private static readonly string World = "hello world\n";

        public static void Main(string[] args)
        {
            var master = World.GetEnumerator();
            var nonblocking = new EnumeratorEnumerable<char>(master, EnumeratorEnumerableMode.NonBlocking);
            var blocking    = new EnumeratorEnumerable<char>(master, EnumeratorEnumerableMode.Blocking);

            foreach (var c in nonblocking)  Console.Write(c); // OK (implicit Reset())
            foreach (var c in blocking)     Console.Write(c); // OK (implicit Reset())
            foreach (var c in nonblocking)  Console.Write(c); // OK (implicit Reset())
            foreach (var c in blocking)     Console.Write(c); // OK (implicit Reset())

            try
            {
                var willRaiseException = from c1 in nonblocking from c2 in nonblocking select new {c1, c2};
                Console.WriteLine("Cartesian product: {0}", willRaiseException.Count()); // RAISE
            }
            catch (Exception e) { Console.WriteLine(e); }

            foreach (var c in nonblocking)  Console.Write(c); // OK (implicit Reset())
            foreach (var c in blocking)     Console.Write(c); // OK (implicit Reset())

            try
            {
                var willSelfLock = from c1 in blocking from c2 in blocking select new { c1, c2 };
                Console.WriteLine("Cartesian product: {0}", willSelfLock.Count()); // LOCK
            }
            catch (Exception e) { Console.WriteLine(e); }

            // should not externally throw (exceptions on other threads reported to console)
            if (ThreadConflictCombinations(blocking, nonblocking))
                throw new InvalidOperationException("Should have thrown an exception on background thread");
            if (ThreadConflictCombinations(nonblocking, nonblocking))
                throw new InvalidOperationException("Should have thrown an exception on background thread");

            if (ThreadConflictCombinations(nonblocking, blocking))
                Console.WriteLine("Background thread timed out");
            if (ThreadConflictCombinations(blocking, blocking))
                Console.WriteLine("Background thread timed out");

            Debug.Assert(true); // Must be reached
        }

        private static bool ThreadConflictCombinations(IEnumerable<char> main, IEnumerable<char> other)
        {
            try
            {
                using (main.GetEnumerator())
                {
                    var bg = new Thread(o =>
                        {
                            try { other.GetEnumerator(); }
                            catch (Exception e) { Report(e); }
                        }) { Name = "background" };
                    bg.Start();

                    bool timedOut = !bg.Join(1000); // observe the thread waiting a full second for a lock (or throw the exception for nonblocking)

                    if (timedOut)
                        bg.Abort();

                    return timedOut;
                }
            } catch
            {
                throw new InvalidProgramException("Cannot be reached");
            }
        }

        static private readonly object ConsoleSynch = new Object();
        private static void Report(Exception e)
        {
            lock (ConsoleSynch)
                Console.WriteLine("Thread:{0}\tException:{1}", Thread.CurrentThread.Name, e);
        }
    }
}

Note 3: I think the implementation of the thread locking (especially around BusyTable) is quite ugly; However, I didn't want to resort to ReaderWriterLock(LockRecursionPolicy.NoRecursion) and didn't want to assume .Net 4.0 for SpinLock


The easiest way of converting I can think of is via the yield statement

public static IEnumerable<T> ToIEnumerable<T>(this IEnumerator<T> enumerator) {
  while ( enumerator.MoveNext() ) {
    yield return enumerator.Current;
  }
}

compared to the list version this has the advantage of not enumerating the entire list before returning an IEnumerable. using the yield statement you'd only iterate over the items you need, whereas using the list version, you'd first iterate over all items in the list and then all the items you need.

for a little more fun you could change it to

public static IEnumerable<K> Select<K,T>(this IEnumerator<T> e, 
                                         Func<K,T> selector) {
      while ( e.MoveNext() ) {
        yield return selector(e.Current);
      }
    }

you'd then be able to use linq on your enumerator like:

IEnumerator<T> enumerator;
var someList = from item in enumerator
               select new classThatTakesTInConstructor(item);

You could use the following which will kinda work.

public class FakeEnumerable<T> : IEnumerable<T> {
  private IEnumerator<T> m_enumerator;
  public FakeEnumerable(IEnumerator<T> e) {
    m_enumerator = e;
  }
  public IEnumerator<T> GetEnumerator() { 
    return m_enumerator;
  }
  // Rest omitted 
}

This will get you into trouble though when people expect successive calls to GetEnumerator to return different enumerators vs. the same one. But if it's a one time only use in a very constrained scenario, this could unblock you.

I do suggest though you try and not do this because I think eventually it will come back to haunt you.

A safer option is along the lines Jonathan suggested. You can expend the enumerator and create a List<T> of the remaining items.

public static List<T> SaveRest<T>(this IEnumerator<T> e) {
  var list = new List<T>();
  while ( e.MoveNext() ) {
    list.Add(e.Current);
  }
  return list;
}

Tags:

C#

.Net

Linq