Is there a tool like Microsoft's "SQL Server Profiler" for MySQL?
MySQL has never come up with Query Profiling. Now that MySQL is being grandfathered by Oracle, I know this will continue to be the case.
Yet, all hope is not lost.
Since 2007, Percona has come up with some absolutely marvelous tools for everything a Developer and DBA would want, including Query Profiling.
Percona's first set of tools, known as MAATKIT, created a realm for the serious user of MySQL. It features many things, such as:
- Query Profiling
- Replication Heartbeat
- Replication Slave Management
- Table Checksum and Synchronization
Percona has recently forked MAATKIT into a more up-to-date set of tools, known today as Percona Toolkit. These tools picked up where MAATKIT left off by expanding the realm of activity for the serious MySQL user to include things such:
- Foreign Key Error Checking
- Online Schema Changing
- Visual Explain Plans
- and more ...
Getting back to the original question, the tools out there for query profiling are
- pt-query-advisor
- pt-query-digest
- mk-query-profiler (for MAATKIT users)
- mk-query-digest (for MAATKIT users)
Here is an example of the kind of rich information that can come from using one of these tools:
I helped a client implement mk-query-digest to report the 20 worst-performing queries every 20 minutes. I got the idea from this YouTube video. The client would move any bad query's output to memcached thus lowering the incidence of the query's taking a toll on the the database.
Here is the script I made to call mk-query-digest (examing the processlist only)
#!/bin/sh
RUNFILE=/tmp/QueriesAreBeingDigested.txt
if [ -f ${RUNFILE} ] ; then exit ; fi
MKDQ=/usr/local/sbin/mk-query-digest
RUNTIME=${1}
COPIES_TO_KEEP=${2}
DBVIP=${3}
WHICH=/usr/bin/which
DATE=`${WHICH} date`
ECHO=`${WHICH} echo`
HEAD=`${WHICH} head`
TAIL=`${WHICH} tail`
AWK=`${WHICH} awk`
SED=`${WHICH} sed`
CAT=`${WHICH} cat`
WC=`${WHICH} wc`
RM=`${WHICH} rm | ${TAIL} -1 | ${AWK} '{print $1}'`
LS=`${WHICH} ls | ${TAIL} -1 | ${AWK} '{print $1}'`
HAS_THE_DBVIP=`/sbin/ip addr show | grep "scope global secondary" | grep -c "${DBVIP}"`
if [ ${HAS_THE_DBVIP} -eq 1 ] ; then exit ; fi
DT=`${DATE} +"%Y%m%d_%H%M%S"`
UNIQUETAG=`${ECHO} ${SSH_CLIENT}_${SSH_CONNECTION}_${DT} | ${SED} 's/\./ /g' | ${SED} 's/ //g'`
cd /root/QueryDigest
OUTFILE=QP_${DT}.txt
HOSTADDR=${DBVIP}
${MKDQ} --processlist h=${HOSTADDR},u=queryprofiler,p=queryprofiler --run-time=${RUNTIME} > ${OUTFILE}
#
# Rotate out Old Copies
#
QPFILES=QPFiles.txt
QPFILES2ZAP=QPFiles2Zap.txt
${LS} QP_[0-9][0-9][0-9][0-9][0-9][0-9][0-9][0-9]_[0-9][0-9][0-9][0-9][0-9][0-9].txt > ${QPFILES}
LINECOUNT=`${WC} -l < ${QPFILES}`
if [ ${LINECOUNT} -gt ${COPIES_TO_KEEP} ]
then
(( DIFF = LINECOUNT - COPIES_TO_KEEP ))
${HEAD} -${DIFF} < ${QPFILES} > ${QPFILES2ZAP}
for QPFILETOZAP in `${CAT} ${QPFILES2ZAP}`
do
${RM} ${QPFILETOZAP}
done
fi
rm -f ${QPFILES2ZAP}
rm -f ${QPFILES}
rm -f ${RUNFILE}
Here is the user I made to connect to mysql using mk-query-digest
GRANT PROCESS ON *.* TO 'queryprofiler'@'%' IDENTIFIED BY 'queryprofiler';
Here is the crontab I ran every 20 minutes (less 10 seconds) keeping the last 144 copies (which is 48 hours of profiling)
*/20 * * * * /root/QueryDigest/ExecQueryDigest.sh 1190s 144 10.1.1.8
The incredible part: The output of mk-query-digest
Here is a profile that ran 2011-12-28 11:20:00 for 1190 sec (20 min less 10 sec)
The last 22 lines
# Rank Query ID Response time Calls R/Call Item
# ==== ================== ================ ======= ========== ====
# 1 0x5E994008E9543B29 40.3255 11.2% 101 0.399263 SELECT schedule_occurrence schedule_eventschedule schedule_event schedule_eventtype schedule_event schedule_eventtype schedule_occurrence.start
# 2 0x392F6DA628C7FEBD 33.9181 9.4% 17 1.995184 SELECT mt_entry mt_objecttag
# 3 0x6C6318E56E149036 26.4695 7.3% 102 0.259505 SELECT schedule_occurrence schedule_eventschedule schedule_event schedule_eventtype schedule_event schedule_eventtype schedule_occurrence.start
# 4 0x00F66961DAE6FFB2 25.5472 7.1% 55 0.464495 SELECT mt_entry mt_placement mt_category
# 5 0x99E13015BFF1E75E 22.3618 6.2% 199 0.112371 SELECT mt_entry mt_objecttag
# 6 0x84DD09F0FC444677 22.3516 6.2% 39 0.573118 SELECT mt_entry
# 7 0x440EBDBCEDB88725 21.1817 5.9% 36 0.588380 SELECT mt_entry
# 8 0x8D258C584B858811 17.2402 4.8% 37 0.465951 SELECT mt_entry mt_placement mt_category
# 9 0x4E2CB0F4CAFD1400 16.9768 4.7% 40 0.424419 SELECT mt_entry mt_placement mt_category
# 10 0x377E0D0898266FDD 16.6979 4.6% 150 0.111319 SELECT polls_pollquestion mt_category
# 11 0x3B9686D98BB8E054 16.2089 4.5% 32 0.506529 SELECT mt_entry mt_objecttag mt_tag
# 12 0x97F670B604A85608 15.6158 4.3% 34 0.459287 SELECT mt_entry mt_placement mt_category
# 13 0x3F5557DA231225EB 14.4309 4.0% 36 0.400859 SELECT mt_entry mt_placement mt_category
# 14 0x191D660A10738896 13.1220 3.6% 31 0.423290 SELECT mt_entry mt_placement mt_category
# 15 0xF88F7421DD88036D 12.1261 3.4% 61 0.198788 SELECT mt_entry mt_blog mt_objecttag mt_tag mt_author
# 16 0xA909BF76E7051792 10.3971 2.9% 53 0.196172 SELECT mt_entry mt_objecttag mt_tag
# 17 0x3D42D07A335ED983 9.1424 2.5% 20 0.457121 SELECT mt_entry mt_placement mt_category
# 18 0x59F43B57DD43F2BD 9.0533 2.5% 21 0.431111 SELECT mt_entry mt_placement mt_category
# 19 0x7961BD4C76277EB7 8.5564 2.4% 47 0.182052 INSERT UNION UPDATE UNION mt_session
# 20 0x173EB4903F3B6DAC 8.5394 2.4% 22 0.388153 SELECT mt_entry mt_placement mt_category
Notice that this the list of the 20 worst-performing queries based on Query Response Time divided by the Number of Times the query was called.
Looking at Query ID #1, which is 0x5E994008E9543B29
, we locate that Query ID in the output file and here is the report for that particular query:
# Query 1: 0.09 QPS, 0.03x concurrency, ID 0x5E994008E9543B29 at byte 0 __
# This item is included in the report because it matches --limit.
# pct total min max avg 95% stddev median
# Count 4 101
# Exec time 7 40s 303ms 1s 399ms 992ms 198ms 293ms
# Lock time 0 0 0 0 0 0 0 0
# Users 1 mt
# Hosts 101 10.64.95.73:33750 (1), 10.64.95.73:34452 (1), 10.64.95.73:38440 (1)... 97 more
# Databases 1 mt1
# Time range 1325089201 to 1325090385
# bytes 0 273.60k 2.71k 2.71k 2.71k 2.62k 0 2.62k
# id 4 765.11M 7.57M 7.58M 7.58M 7.29M 0.12 7.29M
# Query_time distribution
# 1us
# 10us
# 100us
# 1ms
# 10ms
# 100ms ################################################################
# 1s ######
# 10s+
# Tables
# SHOW TABLE STATUS FROM `mt1` LIKE 'schedule_occurrence'\G
# SHOW CREATE TABLE `mt1`.`schedule_occurrence`\G
# SHOW TABLE STATUS FROM `mt1` LIKE 'schedule_eventschedule'\G
# SHOW CREATE TABLE `mt1`.`schedule_eventschedule`\G
# SHOW TABLE STATUS FROM `mt1` LIKE 'schedule_event'\G
# SHOW CREATE TABLE `mt1`.`schedule_event`\G
# SHOW TABLE STATUS FROM `mt1` LIKE 'schedule_eventtype'\G
# SHOW CREATE TABLE `mt1`.`schedule_eventtype`\G
# SHOW TABLE STATUS FROM `schedule_occurrence` LIKE 'start'\G
# SHOW CREATE TABLE `schedule_occurrence`.`start`\G
# EXPLAIN
SELECT `schedule_occurrence`.`id`, `schedule_occurrence`.`schedule_id`, `schedule_occurrence`.`event_id`, `schedule_occurrence`.`start`, `schedule_occurrence`.`end`, `schedule_occurrence`.`cancelled`, `schedule_occurrence`.`original_start`, `schedule_occurrence`.`original_end`, `schedule_occurrence`.`all_day`, `schedule_occurrence`.`ongoing`, `schedule_occurrence`.`featured`, `schedule_eventschedule`.`id`, `schedule_eventschedule`.`event_id`, `schedule_eventschedule`.`start`, `schedule_eventschedule`.`end`, `schedule_eventschedule`.`all_day`, `schedule_eventschedule`.`ongoing`, `schedule_eventschedule`.`min_date_calculated`, `schedule_eventschedule`.`max_date_calculated`, `schedule_eventschedule`.`rule`, `schedule_eventschedule`.`end_recurring_period`, `schedule_eventschedule`.`textual_description`, `schedule_event`.`id`, `schedule_event`.`title`, `schedule_event`.`slug`, `schedule_event`.`description`, `schedule_event`.`host_id`, `schedule_event`.`cost`, `schedule_event`.`age_restrictions`, `schedule_event`.`more_info`, `schedule_event`.`photo_id`, `schedule_event`.`contact_email`, `schedule_event`.`event_type_id`, `schedule_event`.`featured`, `schedule_event`.`staff_pick`, `schedule_event`.`futuremost`, `schedule_event`.`creator_id`, `schedule_event`.`created_on`, `schedule_event`.`allow_comments`, `schedule_event`.`mt_entry`, `schedule_eventtype`.`id`, `schedule_eventtype`.`parent_id`, `schedule_eventtype`.`name`, `schedule_eventtype`.`slug`, `schedule_eventtype`.`lft`, `schedule_eventtype`.`rght`, `schedule_eventtype`.`tree_id`, `schedule_eventtype`.`level`, T5.`id`, T5.`title`, T5.`slug`, T5.`description`, T5.`host_id`, T5.`cost`, T5.`age_restrictions`, T5.`more_info`, T5.`photo_id`, T5.`contact_email`, T5.`event_type_id`, T5.`featured`, T5.`staff_pick`, T5.`futuremost`, T5.`creator_id`, T5.`created_on`, T5.`allow_comments`, T5.`mt_entry`, T6.`id`, T6.`parent_id`, T6.`name`, T6.`slug`, T6.`lft`, T6.`rght`, T6.`tree_id`, T6.`level` FROM `schedule_occurrence` INNER JOIN `schedule_eventschedule` ON (`schedule_occurrence`.`schedule_id` = `schedule_eventschedule`.`id`) INNER JOIN `schedule_event` ON (`schedule_eventschedule`.`event_id` = `schedule_event`.`id`) INNER JOIN `schedule_eventtype` ON (`schedule_event`.`event_type_id` = `schedule_eventtype`.`id`) INNER JOIN `schedule_event` T5 ON (`schedule_occurrence`.`event_id` = T5.`id`) INNER JOIN `schedule_eventtype` T6 ON (T5.`event_type_id` = T6.`id`) WHERE (EXTRACT(MONTH FROM `schedule_occurrence`.`start`) = 8 AND EXTRACT(DAY FROM `schedule_occurrence`.`start`) = 6 AND `schedule_occurrence`.`start` BETWEEN '2011-01-01 00:00:00' and '2011-12-31 23:59:59.99') ORDER BY `schedule_occurrence`.`ongoing` ASC, `schedule_occurrence`.`all_day` DESC, `schedule_occurrence`.`start` ASC\G
Although the histogram is text-based, it gives an accurate picture of the query's overall performance, sometimes running over 1 sec, and most of the time between 0.01 and 0.1 seconds. From here, one can proceed to do performance tuning by refactoring the query, placing query results in memcached, adding missing or covering indexes, etc.
CONCLUSION
IMHO If Percona ever placed the profiler tools into a Windows GUI, it would easily rival Microsoft's SQL Server Profiler.
Defense Rests !!!
See also this answer about Jet Profiler for MySQL
No, there is no such tool.