Is there any benefit to use multiple heaps for memory management purposes?

The main reason for using multiple heaps/custom allocators are for better memory control. Usually after lots of new/delete's the memory can get fragmented and loose performance for the application (also the app will consume more memory). Using the memory in a more controlled environment can reduce heap fragmentation.

Also another usage is for preventing memory leaks in the application, you could just free the entire heap you allocated and you don't need to bother with freeing all the object allocated there.

Another usage is for tightly allocated objects, if you have for example a list then you could allocate all the nodes in a smaller dedicated heap and the app will gain performance because there will be less cache misses when iterating the nodes.

Edit: memory management is however a hard topic and in some cases it is not done right. Andrei Alexandrescu had a talk at one point and he said that for some application replacing the custom allocator with the default one increased the performance of the application.


This is a good link that elaborates on why you may need multiple heap: https://caligari.dartmouth.edu/doc/ibmcxx/en_US/doc/libref/concepts/cumemmng.htm

"Why Use Multiple Heaps?
Using a single runtime heap is fine for most programs. However, using multiple 
heaps can be more efficient and can help you improve your program's performance 
and reduce wasted memory for a number of reasons:

1- When you allocate from a single heap, you may end up with memory blocks on
   different pages of memory. For example, you might have a linked list that 
   allocates memory each time you add a node to the list. If you allocate memory for
   other data in between adding nodes, the memory blocks for the nodes could end up
   on many different pages. To access the data in the list, the system may have to 
   swap many pages, which can significantly slow your program.

   With multiple heaps, you can specify which heap you allocate from. For example, 
   you might create a heap specifically for the linked list. The list's memory blocks 
   and the data they contain would remain close together on fewer pages, reducing the 
   amount of swapping required.

 2- In multithread applications, only one thread can access the heap at a time to 
    ensure memory is safely allocated and freed. For example, say thread 1 is 
    allocating memory, and thread 2 has a call to free. Thread 2 must wait until 
    thread 1 has finished its allocation before it can access the heap. Again, this 
    can slow down performance, especially if your program does a lot of memory 
    operations.

    If you create a separate heap for each thread, you can allocate from them 
    concurrently, eliminating both the waiting period and the overhead required to 
    serialize access to the heap.


 3- With a single heap, you must explicitly free each block that you allocate. If you 
    have a linked list that allocates memory for each node, you have to traverse the 
    entire list and free each block individually, which can take some time.

    If you create a separate heap for that linked list, you can destroy it with a 
    single call and free all the memory at once.

  4- When you have only one heap, all components share it (including the IBM C and 
     C++ Compilers runtime library, vendor libraries, and your own code). If one 
     component corrupts the heap, another component might fail. You may have trouble 
     discovering the cause of the problem and where the heap was damaged.

     With multiple heaps, you can create a separate heap for each component, so if 
     one damages the heap (for example, by using a freed pointer), the others can 
     continue unaffected. You also know where to look to correct the problem."