Least Common Multiple

Here's a more efficient and concise implementation of the Least Common Multiple calculation which takes advantage of its relationship with the Greatest Common Factor (aka Greatest Common Divisor). This Greatest Common Factor function uses Euclid's Algorithm which is more efficient than the solutions offered by user1211929 or Tilak.

static int gcf(int a, int b)
{
    while (b != 0)
    {
        int temp = b;
        b = a % b;
        a = temp;
    }
    return a;
}

static int lcm(int a, int b)
{
    return (a / gcf(a, b)) * b;
}

For more information see the Wikipedia articles on computing LCM and GCF.


Try This:

using System;

public class FindLCM
{
    public static int determineLCM(int a, int b)
    {
        int num1, num2;
        if (a > b)
        {
            num1 = a; num2 = b;
        }
        else
        {
            num1 = b; num2 = a;
        }

        for (int i = 1; i < num2; i++)
        {
            int mult = num1 * i;
            if (mult % num2 == 0)
            {
                return mult;
            }
        }
        return num1 * num2;
    }

    public static void Main(String[] args)
    {
        int n1, n2;

        Console.WriteLine("Enter 2 numbers to find LCM");

        n1 = int.Parse(Console.ReadLine());
        n2 = int.Parse(Console.ReadLine());

        int result = determineLCM(n1, n2);

        Console.WriteLine("LCM of {0} and {1} is {2}",n1,n2,result);
        Console.Read();
    }
}

Output:

Enter 2 numbers to find LCM
8
12
LCM of 8 and 12 is 24

Try this

 int number1 = 20;
 int number2 = 30;
 for (tempNum = 1; ; tempNum++)
 {
   if (tempNum % number1 == 0 && tempNum % number2 == 0)
   {
       Console.WriteLine("L.C.M is - ");
       Console.WriteLine(tempNum.ToString());
       Console.Read();
       break;
    }
 }

// output -> L.C.M is - 60