Limit of ${a_n}^{1/n}$ is equal to $\lim_{n\to\infty} a_{n+1}/a_n$

In fact, the stronger statement is as follows:

Theorem: Let $\{c_n\}$ be any sequence in $\mathbb{R}^+$. Then, $\displaystyle \underline{\lim}\frac{c_{n+1}}{c_n}\leq \underline{\lim}\sqrt[n]{c_n}$ and $\displaystyle \overline{\lim}\sqrt[n]{c_n}\leq \overline{\lim}\frac{c_{n+1}}{c_n}$.

So, with this, if we assume that $\displaystyle \lim\frac{c_{n+1}}{c_n}$ exists then we have that $\displaystyle \overline{\lim}\sqrt[n]{c_n}\leq\overline{\lim}\frac{c_{n+1}}{c_n}=\underline{\lim}\frac{c_{n+1}}{c_n}\leq \underline{\lim}\sqrt[n]{c_n}$ from where it easily follows that $\overline{\lim}\sqrt[n]{c_n}=\underline{\lim}\sqrt[n]{c_n}$ and so $\lim \sqrt[n]{c_n}$ exists and, in fact, it's also clear it must be equal to $\displaystyle \lim\frac{c_{n+1}}{c_n}$. A proof of this fact can be found on page 68 of Rudin's Principles of Mathematical Analysis. I assume you have access to this (very well-known) book--if not say so and I shall give an outline of the proof.


As I mentioned in my comment,

$$a_n^{\frac{1}{n}}= e^{\frac{ \ln (a_n)}{n}} $$

Now, if the limit

$$\lim_{n \to \infty} \frac{\ln (a_{n+1})-\ln (a_n)}{(n+1)-n}= \lim_{n \to \infty} \ln \left( \frac{a_{n+1}}{a_n} \right) $$ exists then by Stolz Cezaro the limit $$\lim_{n \to \infty} \frac{ \ln (a_n)}{n}$$ exists and

$$\lim_{n \to \infty}\frac{ \ln (a_n)}{n}= \lim_{n \to \infty} \ln \left(\frac{a_{n+1}}{a_n}\right) $$

The Theorem mentioned in the other post also follows from the stronger version of Stolz Cezaro by exactly the same reasoning.