Locking a file in Python

The other solutions cite a lot of external code bases. If you would prefer to do it yourself, here is some code for a cross-platform solution that uses the respective file locking tools on Linux / DOS systems.

try:
    # Posix based file locking (Linux, Ubuntu, MacOS, etc.)
    #   Only allows locking on writable files, might cause
    #   strange results for reading.
    import fcntl, os
    def lock_file(f):
        if f.writable(): fcntl.lockf(f, fcntl.LOCK_EX)
    def unlock_file(f):
        if f.writable(): fcntl.lockf(f, fcntl.LOCK_UN)
except ModuleNotFoundError:
    # Windows file locking
    import msvcrt, os
    def file_size(f):
        return os.path.getsize( os.path.realpath(f.name) )
    def lock_file(f):
        msvcrt.locking(f.fileno(), msvcrt.LK_RLCK, file_size(f))
    def unlock_file(f):
        msvcrt.locking(f.fileno(), msvcrt.LK_UNLCK, file_size(f))


# Class for ensuring that all file operations are atomic, treat
# initialization like a standard call to 'open' that happens to be atomic.
# This file opener *must* be used in a "with" block.
class AtomicOpen:
    # Open the file with arguments provided by user. Then acquire
    # a lock on that file object (WARNING: Advisory locking).
    def __init__(self, path, *args, **kwargs):
        # Open the file and acquire a lock on the file before operating
        self.file = open(path,*args, **kwargs)
        # Lock the opened file
        lock_file(self.file)

    # Return the opened file object (knowing a lock has been obtained).
    def __enter__(self, *args, **kwargs): return self.file

    # Unlock the file and close the file object.
    def __exit__(self, exc_type=None, exc_value=None, traceback=None):        
        # Flush to make sure all buffered contents are written to file.
        self.file.flush()
        os.fsync(self.file.fileno())
        # Release the lock on the file.
        unlock_file(self.file)
        self.file.close()
        # Handle exceptions that may have come up during execution, by
        # default any exceptions are raised to the user.
        if (exc_type != None): return False
        else:                  return True        

Now, AtomicOpen can be used in a with block where one would normally use an open statement.

WARNINGS:

  • If running on Windows and Python crashes before exit is called, I'm not sure what the lock behavior would be.
  • The locking provided here is advisory, not absolute. All potentially competing processes must use the "AtomicOpen" class.
  • As of (Nov 9th, 2020) this code only locks writable files on Posix systems. At some point after the posting and before this date, it became illegal to use the fcntl.lock on read-only files.

Alright, so I ended up going with the code I wrote here, on my websitelink is dead, view on archive.org (also available on GitHub). I can use it in the following fashion:

from filelock import FileLock

with FileLock("myfile.txt"):
    # work with the file as it is now locked
    print("Lock acquired.")

There is a cross-platform file locking module here: Portalocker

Although as Kevin says, writing to a file from multiple processes at once is something you want to avoid if at all possible.

If you can shoehorn your problem into a database, you could use SQLite. It supports concurrent access and handles its own locking.


I have been looking at several solutions to do that and my choice has been oslo.concurrency

It's powerful and relatively well documented. It's based on fasteners.

Other solutions:

  • Portalocker: requires pywin32, which is an exe installation, so not possible via pip
  • fasteners: poorly documented
  • lockfile: deprecated
  • flufl.lock: NFS-safe file locking for POSIX systems.
  • simpleflock : Last update 2013-07
  • zc.lockfile : Last update 2016-06 (as of 2017-03)
  • lock_file : Last update in 2007-10