Log-log scale smooth histogram
You can simply get the SmoothKernelDistribution
and build the plot as you'd like:
data = Table[Sin[x]^3 + 1, {x, 0, 6 Pi, 0.1}];
dist = SmoothKernelDistribution[data];
LogLogPlot[PDF[dist, x], {x, 0.01, 2}]
Perhaps an approximation like this may help
Some data from the help:
sizes = FileByteCount /@ FileNames["*.nb",
FileNameJoin[{$InstallationDirectory, "Documentation", "English",
"System", "ReferencePages", "Symbols"}]];
Show[Histogram[sizes, "Log", "LogCount", Frame -> True],
ListLogLogPlot[Transpose[{Rest@#[[1]], #[[2]]} &@HistogramList[sizes, "Log", "LogCount"]],
Joined -> True, InterpolationOrder -> 3, PlotStyle -> Red]]
Combination of the answers of jVincent and belisarius:
dist = SmoothKernelDistribution[Log[sizes], 0.1];
Show[Histogram[sizes, "Log", "LogPDF", Frame -> True, PlotRange -> All],
LogLogPlot[PDF[dist, Log[x]]/x, {x, 10^3, 10^9},
PlotRange -> 10^{-11, -4}, PlotStyle -> Red]]
It uses a smooth kernel with the uniform bandwidth 0.1
in the log scale.