Logarithm of a BigDecimal
Java Number Cruncher: The Java Programmer's Guide to Numerical Computing provides a solution using Newton's Method. Source code from the book is available here. The following has been taken from chapter 12.5 Big Decimal Functions (p330 & p331):
/**
* Compute the natural logarithm of x to a given scale, x > 0.
*/
public static BigDecimal ln(BigDecimal x, int scale)
{
// Check that x > 0.
if (x.signum() <= 0) {
throw new IllegalArgumentException("x <= 0");
}
// The number of digits to the left of the decimal point.
int magnitude = x.toString().length() - x.scale() - 1;
if (magnitude < 3) {
return lnNewton(x, scale);
}
// Compute magnitude*ln(x^(1/magnitude)).
else {
// x^(1/magnitude)
BigDecimal root = intRoot(x, magnitude, scale);
// ln(x^(1/magnitude))
BigDecimal lnRoot = lnNewton(root, scale);
// magnitude*ln(x^(1/magnitude))
return BigDecimal.valueOf(magnitude).multiply(lnRoot)
.setScale(scale, BigDecimal.ROUND_HALF_EVEN);
}
}
/**
* Compute the natural logarithm of x to a given scale, x > 0.
* Use Newton's algorithm.
*/
private static BigDecimal lnNewton(BigDecimal x, int scale)
{
int sp1 = scale + 1;
BigDecimal n = x;
BigDecimal term;
// Convergence tolerance = 5*(10^-(scale+1))
BigDecimal tolerance = BigDecimal.valueOf(5)
.movePointLeft(sp1);
// Loop until the approximations converge
// (two successive approximations are within the tolerance).
do {
// e^x
BigDecimal eToX = exp(x, sp1);
// (e^x - n)/e^x
term = eToX.subtract(n)
.divide(eToX, sp1, BigDecimal.ROUND_DOWN);
// x - (e^x - n)/e^x
x = x.subtract(term);
Thread.yield();
} while (term.compareTo(tolerance) > 0);
return x.setScale(scale, BigDecimal.ROUND_HALF_EVEN);
}
/**
* Compute the integral root of x to a given scale, x >= 0.
* Use Newton's algorithm.
* @param x the value of x
* @param index the integral root value
* @param scale the desired scale of the result
* @return the result value
*/
public static BigDecimal intRoot(BigDecimal x, long index,
int scale)
{
// Check that x >= 0.
if (x.signum() < 0) {
throw new IllegalArgumentException("x < 0");
}
int sp1 = scale + 1;
BigDecimal n = x;
BigDecimal i = BigDecimal.valueOf(index);
BigDecimal im1 = BigDecimal.valueOf(index-1);
BigDecimal tolerance = BigDecimal.valueOf(5)
.movePointLeft(sp1);
BigDecimal xPrev;
// The initial approximation is x/index.
x = x.divide(i, scale, BigDecimal.ROUND_HALF_EVEN);
// Loop until the approximations converge
// (two successive approximations are equal after rounding).
do {
// x^(index-1)
BigDecimal xToIm1 = intPower(x, index-1, sp1);
// x^index
BigDecimal xToI =
x.multiply(xToIm1)
.setScale(sp1, BigDecimal.ROUND_HALF_EVEN);
// n + (index-1)*(x^index)
BigDecimal numerator =
n.add(im1.multiply(xToI))
.setScale(sp1, BigDecimal.ROUND_HALF_EVEN);
// (index*(x^(index-1))
BigDecimal denominator =
i.multiply(xToIm1)
.setScale(sp1, BigDecimal.ROUND_HALF_EVEN);
// x = (n + (index-1)*(x^index)) / (index*(x^(index-1)))
xPrev = x;
x = numerator
.divide(denominator, sp1, BigDecimal.ROUND_DOWN);
Thread.yield();
} while (x.subtract(xPrev).abs().compareTo(tolerance) > 0);
return x;
}
/**
* Compute e^x to a given scale.
* Break x into its whole and fraction parts and
* compute (e^(1 + fraction/whole))^whole using Taylor's formula.
* @param x the value of x
* @param scale the desired scale of the result
* @return the result value
*/
public static BigDecimal exp(BigDecimal x, int scale)
{
// e^0 = 1
if (x.signum() == 0) {
return BigDecimal.valueOf(1);
}
// If x is negative, return 1/(e^-x).
else if (x.signum() == -1) {
return BigDecimal.valueOf(1)
.divide(exp(x.negate(), scale), scale,
BigDecimal.ROUND_HALF_EVEN);
}
// Compute the whole part of x.
BigDecimal xWhole = x.setScale(0, BigDecimal.ROUND_DOWN);
// If there isn't a whole part, compute and return e^x.
if (xWhole.signum() == 0) return expTaylor(x, scale);
// Compute the fraction part of x.
BigDecimal xFraction = x.subtract(xWhole);
// z = 1 + fraction/whole
BigDecimal z = BigDecimal.valueOf(1)
.add(xFraction.divide(
xWhole, scale,
BigDecimal.ROUND_HALF_EVEN));
// t = e^z
BigDecimal t = expTaylor(z, scale);
BigDecimal maxLong = BigDecimal.valueOf(Long.MAX_VALUE);
BigDecimal result = BigDecimal.valueOf(1);
// Compute and return t^whole using intPower().
// If whole > Long.MAX_VALUE, then first compute products
// of e^Long.MAX_VALUE.
while (xWhole.compareTo(maxLong) >= 0) {
result = result.multiply(
intPower(t, Long.MAX_VALUE, scale))
.setScale(scale, BigDecimal.ROUND_HALF_EVEN);
xWhole = xWhole.subtract(maxLong);
Thread.yield();
}
return result.multiply(intPower(t, xWhole.longValue(), scale))
.setScale(scale, BigDecimal.ROUND_HALF_EVEN);
}
A hacky little algorithm that works great for large numbers uses the relation log(AB) = log(A) + log(B)
. Here's how to do it in base 10 (which you can trivially convert to any other logarithm base):
Count the number of decimal digits in the answer. That's the integral part of your logarithm, plus one. Example:
floor(log10(123456)) + 1
is 6, since 123456 has 6 digits.You can stop here if all you need is the integer part of the logarithm: just subtract 1 from the result of step 1.
To get the fractional part of the logarithm, divide the number by
10^(number of digits)
, then compute the log of that usingmath.log10()
(or whatever; use a simple series approximation if nothing else is available), and add it to the integer part. Example: to get the fractional part oflog10(123456)
, computemath.log10(0.123456) = -0.908...
, and add it to the result of step 1:6 + -0.908 = 5.092
, which islog10(123456)
. Note that you're basically just tacking on a decimal point to the front of the large number; there is probably a nice way to optimize this in your use case, and for really big numbers you don't even need to bother with grabbing all of the digits --log10(0.123)
is a great approximation tolog10(0.123456789)
.