Marking points of intersection between two curves

Update 3: Using Graphics`Mesh`FindIntersections to get the intersection points (see also):

showIntersections = Show[#, Graphics @{Red, PointSize[Large], 
      Point @ Graphics`Mesh`FindIntersections @ #}] &;

Using the two examples in the original answer:

Row[showIntersections /@ {Plot[{Cos[x], x Sin[x]}, {x, -3 Pi, 3 Pi}, 
    ImageSize -> 400],
   Plot[{Tan[x], x Sin[x]}, {x, -3 Pi, 3 Pi}, ImageSize -> 400, 
    Exclusions -> Range[-5 Pi/2, 5 Pi/2, Pi]]}]

enter image description here

Original answer:

You can also use MeshFunctions:

  Plot[{Cos[x], x Sin[x]}, {x, -3 Pi, 3 Pi}, 
     MeshFunctions -> {(Cos[#] - # Sin[#]) &}, Mesh -> {{0}}, 
     MeshStyle -> Directive[Red, PointSize[Large]]]

plot of Cos[x] and x Sin[x]

Update: Dealing with Tan[x] using Exclusions

Plot[{Tan[x], x Sin[x]}, {x, -3 Pi, 3 Pi}, 
   MeshFunctions -> {(Tan[#] - # Sin[#]) &}, Mesh -> {{0}}, 
   MeshStyle -> Directive[Red, PointSize[Large]], 
   Exclusions -> Range[-5 Pi/2, 5 Pi/2, Pi]]
   (* or Exclusions -> (Cos[x] == 0) *)

plot of Tan[x] and x Sin[x]

Update 2: Using just Mesh and MeshStyle:

points = NSolve[Tan[x] == x Sin[x] && -3 Pi < x < 3 Pi, x][[All, 1, 2]];
Plot[{Tan[x], x Sin[x]}, {x, -3 Pi, 3 Pi},
  Mesh -> {points},
  MeshStyle -> {Directive[Red, PointSize[Large]]},
  Exclusions -> Range[-5 Pi/2, 5 Pi/2, Pi]]
(* same picture as above *)

Edited to make it a function. For the strange Exclusions specification I use below, see my answer here. Thanks to @Oleksandr and @JM for their great comments.

plInters[{f1_, f2_}, {min_, max_}] :=
 Module[{sol, x},
         sol = x /. NSolve[f1[x] == f2[x] && min < x < max, x];
         Framed@Show[
                  ListPlot[{#, f1[#]} & /@ sol, PlotStyle -> PointSize[Large]],
                  Plot[{f1[x], f2[x]}, {x, min, max}, Exclusions -> {True, f2[x] == 10, f1[x] == 10}]
    ]
  ]


GraphicsRow[plInters[#, {-10, 10}] & /@ {{# &, Tan}, {Tan, Coth}, {Sin, 1/# &}}]

Mathematica graphics