Methods for determining the convergence of $\sum\frac{\cos n}{n}$ or $\sum\frac{\sin n}{n}$
Hint for 2)
$$\sum_{n=1}^{\infty} \frac{|\cos n|}{n} \geq \sum_{n=1}^{\infty} \frac{\cos^2 n}{n}=\sum_{n=1}^{\infty} \frac{1+\cos {2n}}{2n}$$
Convergence of $\sum_{n=1}^{\infty}\frac{\cos{2n}}{2n}$, and divergence of $\sum_{n=1}^{\infty}\frac{1}{2n}$ gives the divergence.
The same method applies to $\sum_{n=1}^{\infty}\frac{|\sin n|}{n}$.