Non Lebesgue measurable subsets with "large" outer measure
A set $E$ with positive Lebesgue measure can be decomposed as a union $E = A \cup B$ where each of $A$ and $B$ have zero inner measure, and therefore each of $A$ and $B$ are nonmeasurable with $m^*(A) = m^*(B) = m(E)$.
An example for this construction is a Bernstein set.