normalize matrix numpy code example
Example 1: how to normalize a 1d numpy array
# Foe 1d array
an_array = np.array([0.1,0.2,0.3,0.4,0.5])
norm = np.linalg.norm(an_array)
normal_array = an_array/norm
print(normal_array)
#[0.2,0.4,0.6,0.8,1] (Should be, I didin't run the code)
Example 2: numpy normalize
def normalize(v):
norm = np.linalg.norm(v)
if norm == 0:
return v
return v / norm
Example 3: normalize rows in matrix numpy
def normalize_rows(x: numpy.ndarray):
"""
function that normalizes each row of the matrix x to have unit length.
Args:
``x``: A numpy matrix of shape (n, m)
Returns:
``x``: The normalized (by row) numpy matrix.
"""
return x/numpy.linalg.norm(x, ord=2, axis=1, keepdims=True)
Example 4: numpy normalize matrix
import numpy as np
x= np.random.random((3,3))
print("Original Array:")
print(x)
xmax, xmin = x.max(), x.min()
x = (x - xmin)/(xmax - xmin)
print("After normalization:")
print(x)