Number of distinct tilings of an n X n square with free n-polyominoes

C, 7 terms

The seventh term is 19846102. (The first six are 1, 1, 2, 22, 515, 56734, as stated in the question).

#include <stdio.h>
#include <string.h>
#include <stdint.h>

#define N 7
#define ctz __builtin_ctzl

typedef uint64_t u64;

static u64 board[N*N] = { 0 };
static u64 adjacency_matrix[N*N] = { 0 };
static u64 count = 0;

static u64 check_symmetry()
{
    static const u64 symmetries[7][3] = {
        { 0,     +N, +1 },
        { N-1,   -1, +N },
        { N-1,   +N, -1 },
        { N*N-1, -1, -N },
        { N*N-1, -N, -1 },
        { N*N-N, +1, -N },
        { N*N-N, -N, +1 },
    };

    int order[N];

    for (u64 i = 0; i < 7; ++i) {
        u64 start = symmetries[i][0];
        u64 dcol = symmetries[i][1];
        u64 drow = symmetries[i][2];
        memset(order, 0xFF, N*sizeof(int));

        for (u64 row = 0, col = 0; col < N || (col = 0, ++row < N); ++col) {
            u64 base = board[col + N*row];
            u64 symmetry = board[start + dcol*col + drow*row];
            u64 lex = 0;

            while (order[lex] != symmetry && order[lex] != -1)
                ++lex;
            order[lex] = symmetry;

            if (lex < base)
                return 0;

            if (base < lex)
                break;
        }
    }

    return 1;
} 

static void recurse(u64 mino, u64 cell, u64 occupied, u64 adjacent, u64 forbidden)
{
    if (cell >= N) {
        ++mino;

        if (mino == N) {
            count += check_symmetry();
            return;
        }

        u64 next = ctz(~occupied);
        board[next] = mino;
        recurse(mino, 1, occupied | 1ul << next, adjacency_matrix[next], 0);
        return;
    }

    adjacent &= ~occupied & ~forbidden;
    while (adjacent) {
        u64 next = ctz(adjacent);
        adjacent &= ~(1ul << next);
        forbidden |= 1ul << next;
        board[next] = mino;
        recurse(mino, cell + 1, occupied | 1ul << next, adjacent | adjacency_matrix[next], forbidden);
    }
}

int main(void)
{
    for (u64 i = 0; i < N*N; ++i) {
        if (i % N)
            adjacency_matrix[i] |= 1ul << (i - 1);
        if (i / N)
            adjacency_matrix[i] |= 1ul << (i - N);
        if (i % N != N - 1)
            adjacency_matrix[i] |= 1ul << (i + 1);
        if (i / N != N - 1)
            adjacency_matrix[i] |= 1ul << (i + N);
    }

    recurse(0, 2, 3, 4 | 3 << N, 0);
    printf("%ld\n", count);
}

Try it online! (for N=6, since N=7 would time out.)

On my machine, N=6 took 0.171s, and N=7 took 2m23s. N=8 would take a few weeks.


An extension to @Grimy's code gets N=8

This just underlines that @Grimy deserves the bounty:

I could prune the search tree by extending the code to check, after each finished polyomino, that the remaining free space is not partitioned into components of size not divisible by N.

On a machine where the original code took 2m11s for N=7, this takes 1m4s, and N=8 was computed in 33h46m. The result is 23437350133.

Here is my addition as a diff:

--- tilepoly.c  2019-10-11 12:37:49.676351878 +0200
+++ tilepolyprune.c     2019-10-13 04:28:30.518736188 +0200
@@ -51,6 +51,30 @@
     return 1;
 } 

+static int check_component_sizes(u64 occupied, u64 total){
+    u64 queue[N*N];
+    while (total<N*N){
+        u64 count = 1;
+        u64 start = ctz(~occupied);
+        queue[0] = start;
+        occupied |= 1ul << start;
+        for(u64 current=0; current<count; ++current){
+            u64 free_adjacent = adjacency_matrix[queue[current]] & ~occupied;
+            occupied |= free_adjacent;
+            while (free_adjacent){
+                u64 next = ctz(free_adjacent);
+                free_adjacent &= ~(1ul << next);
+                queue[count++] = next;
+            }
+        }
+        if (count % N){
+            return 0;
+        }
+        total += count;
+    }
+    return 1;
+}
+
 static void recurse(u64 mino, u64 cell, u64 occupied, u64 adjacent, u64 forbidden)
 {
     if (cell >= N) {
@@ -61,6 +85,9 @@
             return;
         }

+        if(!check_component_sizes(occupied,N*mino))
+            return;
+
         u64 next = ctz(~occupied);
         board[next] = mino;
         recurse(mino, 1, occupied | 1ul << next, adjacency_matrix[next], 0);

Try it online!