Numbers in a list smaller than a given number
(This is more like a comment than an answer, but too long for a comment.)
Some previous answers and comments have suggested using "if-then-else" (->)/2
or using library(apply)
meta-predicate include/3
. Both methods work alright, as long as only plain-old Prolog arithmetics—is/2
, (>)/2
, and the like—are used ...
?- X = 3, include(>(X),[1,3,2,5,4],Xs). X = 3, Xs = [1,2]. ?- include(>(X),[1,3,2,5,4],Xs), X = 3. ERROR: >/2: Arguments are not sufficiently instantiated % This is OK. When instantiation is insufficient, an exception is raised.
..., but when doing the seemingly benign switch from (>)/2
to (#>)/2
, we lose soundness!
?- X = 3, include(#>(X),[1,3,2,5,4],Xs). X = 3, Xs = [1,2]. ?- include(#>(X),[1,3,2,5,4],Xs), X = 3. false. % This is BAD! Expected success with answer substitutions `X = 3, Xs = [1,2]`.
You could write it as a one-liner using findall\3
:
filter( N , Xs , Zs ) :- findall( X, ( member(X,Xs), X < N ) , Zs ) .
However, I suspect that the point of the exercise is to learn about recursion, so something like this would work:
filter( _ , [] , [] ) .
filter( N , [X|Xs] , [X|Zs] ) :- X < N , filter(N,Xs,Zs) .
filter( N , [X|Xs] , Zs ) :- X >= N , filter(N,Xs,Zs) .
It does, however, unpack the list twice on backtracking. An optimization here would be to combine the 2nd and 3rd clauses by introducing a soft cut like so:
filter( _ , [] , [] ) .
filter( N , [X|Xs] , [X|Zs] ) :-
( X < N -> Zs = [X|Z1] ; Zs = Z1 ) ,
filter(N,Xs,Zs)
.
Using ( if -> then ; else )
The control structure you might be looking for is ( if -> then ; else )
.
Warning: you should probably swap the order of the first two arguments:
lessthan_if([], _, []).
lessthan_if([X|Xs], Y, Zs) :-
( X < Y
-> Zs = [X|Zs1]
; Zs = Zs1
),
lessthan_if(Xs, Y, Zs1).
However, if you are writing real code, you should almost certainly go with one of the predicates in library(apply), for example include/3
, as suggested by @CapelliC:
?- include(>(3), [1,2,3], R).
R = [1, 2].
?- include(>(4), [1,2,3], R).
R = [1, 2, 3].
?- include(<(2), [1,2,3], R).
R = [3].
See the implementation of include/3
if you want to know how this kind of problems are solved. You will notice that lessthan/3
above is nothing but a specialization of the more general include/3
in library(apply): include/3
will reorder the arguments and use the ( if -> then ; else )
.
"Declarative" solution
Alternatively, a less "procedural" and more "declarative" predicate:
lessthan_decl([], _, []).
lessthan_decl([X|Xs], Y, [X|Zs]) :- X < Y,
lessthan_decl(Xs, Y, Zs).
lessthan_decl([X|Xs], Y, Zs) :- X >= Y,
lessthan_decl(Xs, Y, Zs).
(lessthan_if/3
and lessthan_decl/3
are nearly identical to the solutions by Nicholas Carey, except for the order of arguments.)
On the downside, lessthan_decl/3
leaves behind choice points. However, it is a good starting point for a general, readable solution. We need two code transformations:
- Replace the arithmetic comparisons
<
and>=
with CLP(FD) constraints:#<
and#>=
; - Use a DCG rule to get rid of arguments in the definition.
You will arrive at the solution by lurker.
A different approach
The most general comparison predicate in Prolog is compare/3
. A common pattern using it is to explicitly enumerate the three possible values for Order
:
lessthan_compare([], _, []).
lessthan_compare([H|T], X, R) :-
compare(Order, H, X),
lessthan_compare_1(Order, H, T, X, R).
lessthan_compare_1(<, H, T, X, [H|R]) :-
lessthan_compare(T, X, R).
lessthan_compare_1(=, _, T, X, R) :-
lessthan_compare(T, X, R).
lessthan_compare_1(>, _, T, X, R) :-
lessthan_compare(T, X, R).
(Compared to any of the other solutions, this one would work with any terms, not just integers or arithmetic expressions.)
Replacing compare/3
with zcompare/3
:
:- use_module(library(clpfd)).
lessthan_clpfd([], _, []).
lessthan_clpfd([H|T], X, R) :-
zcompare(ZOrder, H, X),
lessthan_clpfd_1(ZOrder, H, T, X, R).
lessthan_clpfd_1(<, H, T, X, [H|R]) :-
lessthan_clpfd(T, X, R).
lessthan_clpfd_1(=, _, T, X, R) :-
lessthan_clpfd(T, X, R).
lessthan_clpfd_1(>, _, T, X, R) :-
lessthan_clpfd(T, X, R).
This is definitely more code than any of the other solutions, but it does not leave behind unnecessary choice points:
?- lessthan_clpfd(3, [1,3,2], Xs).
Xs = [1, 2]. % no dangling choice points!
In the other cases, it behaves just as the DCG solution by lurker:
?- lessthan_clpfd(X, [1,3,2], Xs).
Xs = [1, 3, 2],
X in 4..sup ;
X = 3,
Xs = [1, 2] ;
X = 2,
Xs = [1] ;
X = 1,
Xs = [] .
?- lessthan_clpfd(X, [1,3,2], Xs), X = 3. %
X = 3,
Xs = [1, 2] ; % no error!
false.
?- lessthan_clpfd([1,3,2], X, R), R = [1, 2].
X = 3,
R = [1, 2] ;
false.
Unless you need such a general approach, include(>(X), List, Result)
is good enough.
This can also be done using a DCG:
less_than([], _) --> [].
less_than([H|T], N) --> [H], { H #< N }, less_than(T, N).
less_than(L, N) --> [H], { H #>= N }, less_than(L, N).
| ?- phrase(less_than(R, 4), [1,2,3,4,5,6]).
R = [1,2,3] ? ;
You can write your predicate as:
xMenores(N, NumberList, Result) :- phrase(less_than(Result, N), NumberList).