Numpy and line intersections
This is is a late response, perhaps, but it was the first hit when I Googled 'numpy line intersections'. In my case, I have two lines in a plane, and I wanted to quickly get any intersections between them, and Hamish's solution would be slow -- requiring a nested for loop over all line segments.
Here's how to do it without a for loop (it's quite fast):
from numpy import where, dstack, diff, meshgrid
def find_intersections(A, B):
# min, max and all for arrays
amin = lambda x1, x2: where(x1<x2, x1, x2)
amax = lambda x1, x2: where(x1>x2, x1, x2)
aall = lambda abools: dstack(abools).all(axis=2)
slope = lambda line: (lambda d: d[:,1]/d[:,0])(diff(line, axis=0))
x11, x21 = meshgrid(A[:-1, 0], B[:-1, 0])
x12, x22 = meshgrid(A[1:, 0], B[1:, 0])
y11, y21 = meshgrid(A[:-1, 1], B[:-1, 1])
y12, y22 = meshgrid(A[1:, 1], B[1:, 1])
m1, m2 = meshgrid(slope(A), slope(B))
m1inv, m2inv = 1/m1, 1/m2
yi = (m1*(x21-x11-m2inv*y21) + y11)/(1 - m1*m2inv)
xi = (yi - y21)*m2inv + x21
xconds = (amin(x11, x12) < xi, xi <= amax(x11, x12),
amin(x21, x22) < xi, xi <= amax(x21, x22) )
yconds = (amin(y11, y12) < yi, yi <= amax(y11, y12),
amin(y21, y22) < yi, yi <= amax(y21, y22) )
return xi[aall(xconds)], yi[aall(yconds)]
Then to use it, provide two lines as arguments, where is arg is a 2 column matrix, each row corresponding to an (x, y) point:
# example from matplotlib contour plots
Acs = contour(...)
Bsc = contour(...)
# A and B are the two lines, each is a
# two column matrix
A = Acs.collections[0].get_paths()[0].vertices
B = Bcs.collections[0].get_paths()[0].vertices
# do it
x, y = find_intersections(A, B)
have fun
Stolen directly from https://web.archive.org/web/20111108065352/https://www.cs.mun.ca/~rod/2500/notes/numpy-arrays/numpy-arrays.html
#
# line segment intersection using vectors
# see Computer Graphics by F.S. Hill
#
from numpy import *
def perp( a ) :
b = empty_like(a)
b[0] = -a[1]
b[1] = a[0]
return b
# line segment a given by endpoints a1, a2
# line segment b given by endpoints b1, b2
# return
def seg_intersect(a1,a2, b1,b2) :
da = a2-a1
db = b2-b1
dp = a1-b1
dap = perp(da)
denom = dot( dap, db)
num = dot( dap, dp )
return (num / denom.astype(float))*db + b1
p1 = array( [0.0, 0.0] )
p2 = array( [1.0, 0.0] )
p3 = array( [4.0, -5.0] )
p4 = array( [4.0, 2.0] )
print seg_intersect( p1,p2, p3,p4)
p1 = array( [2.0, 2.0] )
p2 = array( [4.0, 3.0] )
p3 = array( [6.0, 0.0] )
p4 = array( [6.0, 3.0] )
print seg_intersect( p1,p2, p3,p4)
import numpy as np
def get_intersect(a1, a2, b1, b2):
"""
Returns the point of intersection of the lines passing through a2,a1 and b2,b1.
a1: [x, y] a point on the first line
a2: [x, y] another point on the first line
b1: [x, y] a point on the second line
b2: [x, y] another point on the second line
"""
s = np.vstack([a1,a2,b1,b2]) # s for stacked
h = np.hstack((s, np.ones((4, 1)))) # h for homogeneous
l1 = np.cross(h[0], h[1]) # get first line
l2 = np.cross(h[2], h[3]) # get second line
x, y, z = np.cross(l1, l2) # point of intersection
if z == 0: # lines are parallel
return (float('inf'), float('inf'))
return (x/z, y/z)
if __name__ == "__main__":
print get_intersect((0, 1), (0, 2), (1, 10), (1, 9)) # parallel lines
print get_intersect((0, 1), (0, 2), (1, 10), (2, 10)) # vertical and horizontal lines
print get_intersect((0, 1), (1, 2), (0, 10), (1, 9)) # another line for fun
Explanation
Note that the equation of a line is ax+by+c=0
. So if a point is on this line, then it is a solution to (a,b,c).(x,y,1)=0
(.
is the dot product)
let l1=(a1,b1,c1)
, l2=(a2,b2,c2)
be two lines and p1=(x1,y1,1)
, p2=(x2,y2,1)
be two points.
Finding the line passing through two points:
let t=p1xp2
(the cross product of two points) be a vector representing a line.
We know that p1
is on the line t
because t.p1 = (p1xp2).p1=0
.
We also know that p2
is on t
because t.p2 = (p1xp2).p2=0
. So t
must be the line passing through p1
and p2
.
This means that we can get the vector representation of a line by taking the cross product of two points on that line.
Finding the point of intersection:
Now let r=l1xl2
(the cross product of two lines) be a vector representing a point
We know r
lies on l1
because r.l1=(l1xl2).l1=0
. We also know r
lies on l2
because r.l2=(l1xl2).l2=0
. So r
must be the point of intersection of the lines l1
and l2
.
Interestingly, we can find the point of intersection by taking the cross product of two lines.
This is a version of @Hamish Grubijan's answer that also works for multiple points in each of the input arguments, i.e., a1
, a2
, b1
, b2
can be Nx2 row arrays of 2D points. The perp
function is replaced by a dot product.
T = np.array([[0, -1], [1, 0]])
def line_intersect(a1, a2, b1, b2):
da = np.atleast_2d(a2 - a1)
db = np.atleast_2d(b2 - b1)
dp = np.atleast_2d(a1 - b1)
dap = np.dot(da, T)
denom = np.sum(dap * db, axis=1)
num = np.sum(dap * dp, axis=1)
return np.atleast_2d(num / denom).T * db + b1